图
文章平均质量分 92
图
饮冰l
这个作者很懒,什么都没留下…
展开
-
论文笔记:AAAI 2021 Beyond Low-frequency Information in Graph Convolutional Networks
前言现有的大部分 GNN 方法集中于对图数据中的低频信息进行处理,这也产生了一个问题:真实世界中我们需要的仅仅是图中的低频信息吗?作者在本文中进行了实验说明了在不同的条件下仅使用低频信息是有局限性的。基于此,作者提出了一种基于自我门控机制的 Frequency Adaptation Graph Convolutional Networks (FAGCN) 。核心在于实现自适应的频率信息图卷积。同时作者还分析了在学习节点特征表示过程中低频信息和高频信息扮演什么样的角色。论文链接:https://arxi原创 2021-04-24 21:33:27 · 4226 阅读 · 0 评论 -
详解GCN的性质
前言本文参考 – 深入浅出图神经网络 GNN 原理解析一书GCN 的性质GCN 与 CNN 的联系1. 图像是一种特殊的图数据在图像中如果将像素视作节点,将像素之间空间坐标的连线作为彼此之间的边,如此图像数据就变成了一种结构非常规则的图数据,CNN 中的卷积计算则是用来出来这类固定的 2D 栅格结构的图数据。相较之下,一般意义下的图数据,往往单个节点附近的邻域结构是千差万别的,数据之间的关系也较为复杂多样,GCN中的卷积计算则是用来处理更普遍的非结构化的图数据。2.从网络连接方式来看,两者都是局原创 2021-04-21 01:31:35 · 1573 阅读 · 0 评论 -
详解图信号处理与图卷积神经网络
图信号处理图信号处理(Graph Signal Processing ,GSP)是离散信号处理(Discrete Signal Processing,DSP)理论在图信号领域的应用。其通过傅里叶变换、滤波等信号处理基本概念的迁移,来研究对图信号的压缩、变换、重构等信号处理的基础任务。图信号与图的拉普拉斯矩阵图信号给定图 G(V,E)G(V,E)G(V,E),其中 VVV 表示图中的节点集合,图信号是一种描述从节点域到实数域的映射,表示成向量的形式为:x=[x1,x2,…,xN]T\mathbf{x}原创 2021-04-20 22:54:31 · 4993 阅读 · 1 评论 -
论文笔记:KDD 2020 Adaptive Graph Encoder for Attributed Graph Embedding
前言属性图嵌入,具体来说就是通过图数据结构中的拓扑关系和节点特征信息完成节点表示学习的过程。其中属性图的具体指的就是节点的特征信息。作者首先分析了现有的基于 GCN 的属性图嵌入方法的三个缺点,分别是:图卷积滤波器与权矩阵的纠缠不仅会影响性能,而且会影响鲁棒性这些方法中的图卷积滤波器是广义拉普拉斯平滑滤波器的特殊情况,但它们并不保留最优低通特性。现有算法的训练目标通常是恢复邻接矩阵或特征矩阵(通过自动编码器框架),这与实际应用并不总是一致的。因此,作者提出了一种自适应的图编码方法 Adapti原创 2021-03-18 16:57:56 · 2137 阅读 · 0 评论 -
论文笔记:IJCAI 2020 Bilinear Graph Neural Network with Neighbor Interactions
前言经典的 GCN 方法选择在当前节点的邻域节点中进行频域的卷积操作,将卷积得到后的特征表示通过 weighted sum 的形式汇聚到当前节点。作者认为这种计算方式需要基于以下条件才能有效:领域节点之间没有联系。这显然不符合真实情况,同时这种粗暴的信息聚合方式忽略了邻域节点集中可能的特征交互。作者举了一个简单的例子来说明:可以看出两种不同的信息聚合方式所产生的结果相差巨大。因此,本文中着重讨论了在 GNN 中建模邻域节点之间交互关系的重要性。并且提出了一种新的卷积操作加强邻域节点之间的特征交互。该原创 2021-03-09 16:24:00 · 1081 阅读 · 0 评论 -
论文笔记:KDD 2020 AM-GCN: Adaptive Multi-channel Graph Convolutional
前言本文针对于图神经网络中的节点特征信息和拓扑结构信息提出了一种自适应多通道图卷积框架,相当于对传统图卷积神经网络的优化和补充论文链接:https://arxiv.org/pdf/2007.02265v2.pdfgithub:https://github.com/zhumeiqiBUPT/AM-GCN1. Fusion Capability Of GCNs : An Experimental Investigation作者使用两种 case 测试了现有的 GCN 方法是否可以自适应的从图中学习到节原创 2021-03-08 21:51:11 · 1188 阅读 · 0 评论 -
论文笔记:ICLR 2019 How Powerful Are Graph Neural Networks
前言虽然 GNN 提供了在深度学习层面解决非欧式空间图结构数据的一系列方法,但人们对其表示学习方法的特点和局限性认识有限。因此作者提出了一个理论框架来分析GNNs 捕获不同图结构的表达能力。作者主要分析了主要的 GNN 方法的辨别力,尤其是 GCN 和 GraphSAGE 并证明它们不能对不同的简单图结构进行区分。并且作者提出了一个新的框架来完成图表示学习并在图级别的分类任务上进行了测试。论文链接:https://arxiv.org/abs/1810.00826github:https://githu原创 2021-03-08 15:47:00 · 918 阅读 · 1 评论 -
论文笔记:CIKM 2019 Rethinking the Item Order in Session-based Recommendation with Graph Neural Networks
前言在传统的会话推荐模型中一般采用注意力机制来建模用户的偏好嵌入,但是作者认为用户的偏好是更加复杂的关系,单纯靠交互的物品间的联系不足以充分表达。因此,本文主要通过建模会话图来研究物品之间的联系模式,提出了一种模型框架来协同处理会话图中的序列顺序和潜在顺序,具体来说,本文提出了一个加权注意力图结构和一个读出函数来学习物品和会话的嵌入。论文链接:https://arxiv.org/pdf/1911.11942v1.pdfgithub:https://github.com/RuihongQiu/FGNN原创 2021-02-23 21:47:50 · 1104 阅读 · 2 评论 -
论文笔记:ICDM 2020 DGTN: Dual-channel Graph Transition Network for Session-based Recommendation
前言会话推荐任务的不同方法无异于将匿名会话建模成序列或者图来对会话特征嵌入进行学习,但是目前的大多数方法忽略了不同会话中物品间的复杂联系。其中包括潜在的协同过滤信息,并反映类似的行为模式,作者认为这可能有助于完成基于会话的推荐任务。基于此本文提出了一种双通道的图转换网络,来对物品转换关系进行建模,这种转换关系包括了目标会话和相邻会话。具体来说,我们将目标会话和它的邻居(类似的)会话集成到一个图中。然后,过渡信号通过通道感知传播显式注入到嵌入中。论文链接:https://arxiv.org/pdf/20原创 2021-02-22 19:16:11 · 1194 阅读 · 6 评论 -
SIGIR 2020 TAGNN: Target Attentive Graph Neural Networks for Session-based Recommendation
前言目前已经有很多方法通过将会话建模为序列或图来完成对会话的嵌入,进而对 next-item 进行预测。这些方法将会话压缩为一个固定的表示向量,而不考虑要预测的目标项。之前的大多数方法的出发点就是通过对会话进行嵌入,期望能够捕获到用户意图信息完成对未来可能产生交互物品的预测。本文的作者认为由于目标物品的多样性和用户的兴趣,固定的向量会限制推荐模型的表示能力。因此在本文中提出了一种新的目标注意图神经网络( TAGNN )模型用于基于会话的推荐。在TAGNN中,目标感知注意自适应地激活了用户对不同目标物品的原创 2021-02-19 20:12:42 · 1529 阅读 · 0 评论 -
论文笔记:AAAI 2021 Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation
前言Session-based recommendation (SBR) 也就是会话推荐主要的任务就是基于目前已有的多个用户物品交互序列,完成 next-item 预测。在这种情况下,用户配置文件不可用,因此从多个用户物品交互序列中提取用户意图嵌入就格外重要。基于此本文将会话数据建模为超图,提出了一种双通道超图卷积网络 - DHCN。同时本文为了增强超图建模,创新性地将自监督学习融入到网络训练中,最大化通过 DHCN 中两个通道学习的会话表示之间的互信息,作为改进推荐任务的辅助任务。总结来说文本的创新原创 2021-02-19 13:17:14 · 4810 阅读 · 12 评论 -
论文笔记:SIGIR 2020 Next-item Recommendation with Sequential Hypergraphs
前言在推荐系统中,往往可以通过用户交互序列来动态获取用户的偏好。物品的语义信息往往随着时间和用户发生改变,因此为了更加有效的从用户动态的交互序列中抽取特征完成物品语义信息的更新,本文提出了一种针对于 next-item 推荐的框架,其主要基于序列超图完成推荐。从图中可以看出来,用户的交互行为随着时间动态变化,而且同一物品随着用户交互行为的变化,对于其语义信息的表示也会随着变化。该模型的主要特点如下:基于动态的用户交互序列建模超图来表达短期的物品相关性,应用多种类型的卷积层来捕获超图中的多阶关系。原创 2021-02-18 17:41:42 · 1852 阅读 · 0 评论 -
论文笔记:AAAI 2021 Identity-aware Graph Neural Networks
前言消息传递图神经网络(GNNs)为关系数据提供了强大的建模框架。然而,现有的 GNN 的表达能力受到1-Weisfeiler-Lehman (1-WL) 图同构检验的上界,即不能预测节点聚类系数和最短路径距离的 GNN。基于此本文提出了一类传递消息的 GNN,称为身份感知图神经网络 (ID-GNNs),具有比 1-WL 测试更强的表达能力。ID-GNN 为现有 GNN 的局限性提供了一个新的解决方案。ID-GNN 通过在消息传递过程中归纳地考虑节点的身份来扩展现有的 GNN 体系结构。为了嵌入一个给定原创 2021-02-18 00:15:36 · 1995 阅读 · 1 评论 -
论文笔记:NIPS 2020 Graph Contrastive Learning with Augmentations
前言本文主要提出在图对比学习大框架下的图数据增强的若干方法。概括来说,本文提出了一种图对比学习框架来无监督的完成图表示学习,首先作者提出了基于各种先验信息的四种图数据增强方法。然后,作者分析了在四种不同的图数据增强条件下,不同组合对多个数据集的影响:半监督、无监督、迁移学习以及对抗性攻击。作者为 GNN 的预训练提出了基于图数据增强的对比学习框架来解决图中数据异质性的挑战,本文的主要贡献如下:作者提出了四种图数据增强的方法,并且四种方法对图数据施加一定的先验性,并对范围和模式进行参数化。作者提出原创 2021-02-17 10:37:59 · 1484 阅读 · 0 评论 -
论文笔记:ICLR 2019 Deep Graph Infomax
前言论文链接:https://arxiv.org/abs/1809.10341github:https://github.com/PetarV-/DGI之前的大部分图节点表示学习方法属于半监督学习例如经典的GCN,本文的主要创新是提出了一种无监督一般化的图节点表示学习方法。DGI依赖于最大限度地扩大图增强表示和目前提取到的图信息之间的互信息——两者都是使用已建立的图卷积网络体系结构导出的。对于图增强表示,是根据感兴趣节点所生成的子图,因此可以用于下游节点的表示学习任务。相较于之前对于 GCN 的无监原创 2021-02-13 12:20:40 · 1448 阅读 · 1 评论 -
论文笔记:Neural Message Passing for Quantum Chemistry
前言论文链接:https://arxiv.org/abs/1704.01212github:https://github.com/ifding/graph-neural-networks参考:https://blog.csdn.net/qq_27075943/article/details/106623059MPNN 不是一个模型,而是一个框架。作者在这篇论文中主要将现有模型抽象其共性并提出成 MPNN 框架,同时利用 MPNN 框架在分子分类预测中取得了一个不错的成绩。在这篇论文中,作者的目标是原创 2020-07-18 14:57:05 · 5097 阅读 · 0 评论 -
论文笔记:AAAI 2019 Session-based Recommendation with Graph Neural Networks
前言在某些序列推荐系统中,一个用户-项目交互序列包括多个子序列(也称为会话)。在这种情况下,除了当前子序列中先前的交互作用外,历史子序列还可能影响当前子序列中预测的下一个用户-项目交互作用。基于会话的推荐问题旨在基于会话预测用户的行为,以前的相关方法将会话建模为序列,并通过对用户表示进行学习来完成推荐。这些方法虽然取得了令人满意的结果,但它们不足以在会话中获得准确的用户表示,并忽略了复杂的物品表示转换。为了获得准确的物品嵌入和考虑物品表示的复杂转换,本文提出了一种基于会话的GNN网络模型。在 SR-GN原创 2021-02-06 14:04:26 · 572 阅读 · 1 评论 -
论文笔记:ICLR 2021 Combining Lable Propagation And Simple Models Out-Performs Graph Neural Network
前言:本文的作者认为对于 GNN 的可解释性不足。基于此,作者在节点分类任务上提出可以通过将忽略图结构的浅层模型与两个利用标签结构中相关性的后处理方法相结合,超越或匹配最先进的 GNN 。具体如下:(i)误差相关性:传播训练数据中的残余误差以纠正测试数据中的错误信息(ii)预测相关性:在测试集数据上进行平滑预测作者将整个过程称为 Correct and Smooth (C&S)。其中后处理步骤是通过对早期的基于图的半监督学习方法的标准标签传播方法进行修改实现的。该方法实现了惊人的性能提升,在原创 2021-02-05 15:16:54 · 2382 阅读 · 8 评论 -
论文笔记:ACL 2019 Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs
1. 前言论文链接:https://arxiv.org/pdf/1906.01195.pdfgithub:https://github.com/deepakn97/relationPrediction知识图谱(KGs)的激增加上不完整或部分信息,以实体之间的缺失关系(链接)的形式,激起了许多关于知识完成(也称为关系预测)的研究。最近的一些工作表明,基于卷积神经网络(CNN)的模型会生成更丰富和更具表达力的特征嵌入并且因此在关系预测上也表现出色。但是,但是这些KG嵌入方法独立地处理三元组,因此无法覆盖固原创 2020-11-03 16:53:41 · 2897 阅读 · 1 评论 -
知识图谱嵌入经典方法(Trans系列、KG2E)
1. 知识图谱嵌入相关内容部分来自:https://zhuanlan.zhihu.com/p/1475420082.1 知识表示的一些背景知识通常,我们使用三元组(head, relation, tail)来表示知识。在这里,头和尾是实体。例如,(sky tree, location, Tokyo)。我们可以用独热向量来表示这个知识。但实体和关系太多,维度太大。当两个实体或关系很近时,独热向量无法捕捉相似度。受Wrod2Vec模型的启发,我们想用分布表示来表示实体和关系。1.1.1 下游任务的应用原创 2020-11-01 11:05:38 · 7248 阅读 · 0 评论 -
异质信息网络和知识图谱
1. 前言最近在研究异质信息网络,发现知识图谱无论是在建模方式还是下游任务都与异质信息网络有很大的相似性。在这里简单介绍一下知识图谱的相关概念和从网上找来的知识图谱嵌入综述类的文章或者博客进行总结。比较分析一下异质信息网络表示和知识图谱嵌入之间的异同文中截图来源于自己做的组会分享ppt,非常简陋…部分比较精美的图片来源于知乎文章的插图和 https://www.zhihu.com/people/Jhy1993 一片分享ppt2. 异质信息网络和知识图谱2.1 异质信息网络现实生活中形形原创 2020-10-31 11:36:00 · 7297 阅读 · 2 评论 -
论文笔记:ICLR 2020 Composition-based Multi-Relational Graph Convolutional Networks
1. 前言论文链接:https://arxiv.org/abs/1911.03082?context=stat.MLgithub:https://github.com/malllabiisc/CompGCN原创 2020-10-26 17:02:21 · 2187 阅读 · 0 评论 -
论文笔记:ESWC 2018 Modeling Relational Data with Graph Convolutional Networks
前言论文链接:https://arxiv.org/pdf/1703.06103.pdfgithub:https://github.com/kkteru/r-gcn本文提出了一种将图卷积操作应用与知识图谱的变体–R-GCN,知识图谱与传统同质图的最大区别在于知识图谱存在多种类型的节点和边,虽然边的定义没有特殊含义但是连接不同节点的边存在不同的语义信息,如果同时进行处理会造成很大的误差。个人认为知识图谱与异质图非常像,好像也没有人对这两者的关系作出一个很明确的定义,而且好像两边都是各玩各的…基于此作者原创 2020-10-25 14:46:01 · 774 阅读 · 0 评论 -
论文笔记:WWW 2020 MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding
1. 前言论文链接:https://dl.acm.org/doi/10.1145/3292500.3330673github:https://github.com/cynricfu/MAGNN异质图嵌入是将异质图的丰富结构信息嵌入到低维节点表示中。现有的模型通常是定义一个异质图中的多个元路径,用于捕获复合关系和指导邻域选择。然而,这些模型存在着几个问题省略节点内容特性沿着元路径丢弃中间节点只考虑一个元路径为了解决这三个问题,本文提出了一种新的异质图神经网络(MAGNN)模型来提高算法的性能原创 2020-10-24 15:13:38 · 2040 阅读 · 1 评论 -
论文笔记:NIPS 2019 Graph Transformer Networks
1. 前言论文链接:https://arxiv.org/pdf/1911.06455.pdfgithub:https://github.com/seongjunyun/Graph_Transformer_NetworksGNN 被广泛应用于图表示学习中,并且具有显著的优势。然而,大多数现有的 GNNs 被设计用于学习固定的同构图上的节点表示。在学习一个由各种类型的节点和边组成的异构图的表示时,这些限制尤其会成为问题。在本文中提出了能够生成新的图结构的图变网络(GTNs),它包括识别原始图上未连接节点之原创 2020-10-23 20:47:44 · 2082 阅读 · 3 评论 -
论文笔记:WWW 2020 Heterogeneous Graph Transformer
1. 前言论文链接:https://arxiv.org/abs/2003.01332github:https://github.com/acbull/pyHGT近年来,图神经网络(GNNs)在结构化数据建模方面取得了巨大的成功。但是,大多数GNN为同构图设计,同构图中所有的节点和边都属于相同的类型,这使得它们无法表示异构结构。本文中提出了一种异构图转换器(HGT)体系结构来建模网络规模的异构图。为了对异质性进行建模,本文设计了节点和边类型相关的参数来表征每个边缘上的异质性注意,使HGT能够对不同类型的原创 2020-10-17 15:30:36 · 3769 阅读 · 4 评论 -
论文笔记:KDD 2019 Heterogeneous Graph Neural Network
1. 前言论文链接:https://dl.acm.org/doi/10.1145/3292500.3330961github:https://github.com/chuxuzhang/KDD2019_HetGNN该文提出了一种基于深层模型的异质网络表示学习的方法HetGNN。异构图的表示学习旨在为每个节点寻求一个有意义的向量表示,以便于链接预测、个性化推荐、节点分类等下游应用。然而,这个任务是挑战不仅因为需求将异构结构(图)组成的多种类型的节点和边的信息,但也需要考虑异构属性或内容(文本或图像)与原创 2020-10-14 21:07:13 · 1692 阅读 · 0 评论 -
从Random Walk(随机游走)到Graph Embedding(DeepWalk,LINE,Node2vec,SDNE,Graph2vec,GraphGAN)
前言本文转载自csdn博主上杉翔二系列博客并外加一些自己收集的资料,在这里仅作为自己学习之用。原文链接:https://blog.csdn.net/qq_39388410/article/details/879049741. 随机游走普通数据挖掘方法大多都是确定性模型,对于输入的输出往往没有随机性,而一些能给出概率的随机性模型似乎更加的适用,如蒙特卡洛模拟,即模拟输入一堆的随机数进行评估。1.1 几何布朗运动(Brownian motion)布朗运动是将看起来连成一片的液体,在高倍显微镜下看其实转载 2020-10-14 15:27:51 · 11219 阅读 · 2 评论 -
北邮石川教授:「异质信息网络」研究现状及未来发展
本文转载自:https://www.leiphone.com/news/201801/MpY4WF11OTnFLp7y.html图片均来源于转载地址异质信息网络研究现状及未来发展一、引言现实生活中的大多数实际系统是由大量相互作用、类型不同的组件构成,当前的分析方法通常将其建模为同质信息网络(Homogeneous information network)。采用同质网络的建模方法往往只抽取了实际交互系统的部分信息,或者没有区分交互系统中对象及关系的差异性,这些做法都会造成信息不完整或信息损失。最近,转载 2020-10-10 11:30:37 · 2295 阅读 · 0 评论 -
会议报告:CIKM 2019 Learning and Reasoning on Graph for Recommendation
前言这是关于图与推荐在CIKM 2019的一篇会议报告链接: https://dl.acm.org/doi/10.1145/3357384.33603171. 摘要推荐方法构建预测模型来估计用户-物品交互的可能性。以前的模型在很大程度上遵循了一种通用的监督学习范式——将每次交互视为单独的数据实例,并基于“信息孤岛”进行预测。这种方法忽略了数据实例之间的关系,特别是在稀疏的情况下,可能会导致性能不佳。此外,建立在单独数据实例上的模型很难展示推荐背后的原因,使得推荐过程难以理解。我们将从图学习的角度重新原创 2020-10-09 20:44:19 · 501 阅读 · 0 评论 -
论文笔记:KDD 2020 Dual Channel Hypergraph Collaborative Filtering
1. 前言论文链接:https://www.researchgate.net/publication/343777368_Dual_Channel_Hypergraph_Collaborative_Filteringgithub:暂无协同过滤(CF)是当今众多推荐系统中最流行、最重要的推荐方法之一。现有的基于CF的方法,从矩阵分解到新兴的基于图的方法,虽然得到了广泛的应用,但是在训练的数据非常有限的情况下,表现都很差。在本文中,我们首先指出了这种不足的根本原因,并观察到现有基于CFbased方法内在设原创 2020-10-03 16:26:07 · 2185 阅读 · 0 评论 -
SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS代码注解
论文地址:https://arxiv.org/abs/1609.02907代码地址:https://gitee.com/lxk_yb/pygcntrain.pyfrom __future__ import divisionfrom __future__ import print_functionimport timeimport argparse # argparse 是pytho...原创 2020-05-07 11:55:35 · 955 阅读 · 2 评论 -
论文笔记:Graph Convolutional Matrix Completion
前言内容转载自:https://blog.csdn.net/yyl424525/article/details/102747805仅作为学习笔记之用论文链接:https://www.kdd.org/kdd2018/files/deep-learning-day/DLDay18_paper_32.pdfgithub:https://github.com/SongFGH/gc-mc-pytorch(pytorch版本复现)图卷积神经网络(GCN)是现在深度学习的热点之一,这篇文章基于user-item转载 2020-07-17 10:58:29 · 2526 阅读 · 3 评论 -
论文笔记:2019[IJCAI]Attributed Graph Clustering via Adaptive Graph Convolution
前言此篇博客转载至[https://zhuanlan.zhihu.com/p/114452245](https://zhuanlan.zhihu.com/p/114452245)Motivation本文利用了高阶结构信息(多层GNN)来提升聚类的效果.尽管这两篇非常相似,它们也是有一些差异的:(1) 本文所提出的AGC是从图信号处理谱图理论的角度来理解GNN并增强了聚类效果(2) 本文所涉及的AGC可以自适应的选择高阶信息的阶数Model谱域的图卷积自适应k选择现在还剩一个问题需转载 2020-06-13 15:55:07 · 1086 阅读 · 0 评论 -
论文笔记:Variational Graph Auto-Encoders
前言本文提出了一种基于图数据类型的无监督学习方法,参考自动编码器(AE)和变分自动编码器(VAE)结合图数据结构的特点,提出了图自动编码器(GAE)和变分图自动编码器(VGAE)。先简单描述一下图自编码器的intention 和用途:获取合适的 embedding 来表示图中的节点不是容易的事,而如果能找到合适的 embedding,就能将它们用在其他任务中。VGAE 通过 encoder-decoder 的结构可以获取到图中节点的 embedding,来支持接下来的任务,如链接预测等。论文链接:htt原创 2020-06-03 15:21:54 · 7369 阅读 · 4 评论 -
论文笔记:AAAI 2019 Hypergraph Neural Networks
1. 前言论文链接:http://gaoyue.org/paper/HGNN.pdfgithub:https://github.com/iMoonLab/HGNN在本文中提出了一个用于数据表示学习的超图神经网络(HGNN)框架,它可以在超图结构中编码高阶数据相关性。面对在实践中学习复杂数据表示的挑战,特别是在处理复杂数据时,超图在数据建模方面更加灵活。该方法设计了超边卷积运算来处理表示学习过程中的数据相关性。通过这种方法,可以有效地利用超边卷积运算来进行传统的超图学习。HGNN能够学习考虑到高阶数据结原创 2020-10-03 12:11:42 · 10244 阅读 · 2 评论 -
论文笔记:NIPS 2007 Learning with Hypergraphs && CVPR 2015 Learning Hypergraph-regularized Attribute Pred
前言这篇文章算是超图方面的文章鼻祖,当作综述来看,系统了解一下超图我们通常将研究对象赋予成对的关系,可以用图来表示。然而,在许多现实问题中,我们感兴趣的对象之间的关系要比两两关系复杂得多。天真地将复杂的关系压缩成两两的关系将不可避免地导致信息的丢失,而这些信息对我们的学习任务是有价值的。因此,使用超图来代替完全表示我们感兴趣的对象之间的复杂关系,从而产生了使用超图学习的问题。本文的主要贡献是将原本适用于无向图的光谱聚类方法推广到超图,并在超图聚类方法的基础上进一步发展了超图的嵌入和转换分类算法。在数学原创 2020-09-30 20:38:33 · 1872 阅读 · 1 评论 -
论文笔记:IJCAL 2019 STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Sys
前言文章针对推荐系统提出了一种新的堆叠和重构图卷积网络(STAR-GCN)结构来学习节点的表征,提高推荐系统的效率,特别是在冷启动场景。STAR-GCN采用一堆GCN编码器/解码器与中间监督相结合,以提高最终预测性能。同图卷积矩阵分解模型用one-hot节点作为输入不同,STAR-GCN学习低维的user、item 隐表征作为输入来限制模型的空间复杂度。STAR-GCN可以通过重建屏蔽的输入节点表征来为新节点生成节点表征,这本质上解决了冷启动问题 。文章在为链接预测任务训练基于GCN的模型时发现标签泄漏问原创 2020-09-27 10:08:31 · 1323 阅读 · 0 评论 -
论文笔记:AAAI 2020 Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional
前言近年来,在基于协同过滤(CF)的推荐系统(RS)中,一些研究者将用户与项目的交互行为视为一个二分图,用GCNs对高层协同信号进行建模。这些基于GCN的推荐模型与传统的推荐模型相比具有更高的性能。然而,在用户和物品的交互大图中带有非线性激活函数的模型训练起来非常困难。此外,由于图卷积运算的过度平滑效应,大多数基于GCN的模型无法对更深层次进行建模。本文从两个方面重新探讨了基于GCN的CF模型。证明了去除非线性会提高推荐性能,这与简单图卷积网络中的理论是一致的。本文提出了一种残差网络结构,该结构是原创 2020-09-20 16:00:13 · 1639 阅读 · 2 评论 -
论文笔记:LightGCN Simplifying and Powering Graph Convolution Network for Recommendation
前言论文链接:https://arxiv.org/abs/2002.02126github:https://github.com/gusye1234/LightGCN-PyTorch参考:https://blog.csdn.net/qq_39388410/article/details/106970194https://blog.csdn.net/u013422128/article/details/107504654图卷积网络(GCN)已经成为协同过滤的最新技术。然而,对于推荐的有效性的原因却没原创 2020-08-14 13:35:37 · 1711 阅读 · 1 评论