微积分学习笔记(1)--修改中

微积分(1)


目录:

预备知识

三角恒等式

s i n 2 + c o s 2 = 1 sin^2 + cos^2 = 1 sin2+cos2=1

证明:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8ho1TfF2-1603461514797)(D:\图片\0.png)]

​ 在三角形中斜边为1,直边分别为sin(θ) 和 cos(θ)

​ 由勾股定理得此公式

1 + t a n 2 = s e c 2 1 + tan^2 = sec^2 1+tan2=sec2

证明:
公式(1)等式两边同时除以cos

1 + c o t 2 = c s c 2 1 + cot^2 = csc^2 1+cot2=csc2

证明:

​ 公式(1)等式两边同时除以sin

和角公式

c o s ( A + B ) = c o s A c o s B − s i n A s i n B s i n ( A + B ) = s i n A c o s B + c o s A s i n B cos(A+B) = cosAcosB-sinAsinB\\ sin(A+B)=sinAcosB+cosAsinB cos(A+B)=cosAcosBsinAsinBsin(A+B)=sinAcosB+cosAsinB

Proof:

preview

​ The figure shows

b = s i n ( β ) c o s ( α ) b=\frac{sin(β)}{cos(\alpha)} b=cos(α)sin(β)

a = s i n ( α ) × ( c o s ( β ) − b × s i n ( α ) ) a=sin(\alpha)\times(cos(\beta)-b\times sin(\alpha)) a=sin(α)×(cos(β)b×sin(α))

s i n ( α + β ) = a + b sin(\alpha+\beta)=a+b sin(α+β)=a+b

​ Integrate the reletionship and get formula(4)

Proof:

​ The figure shows

b = s i n ( β ) c o s ( α ) b=\frac{sin(β)}{cos(\alpha)} b=cos(α)sin(β)

a = s i n ( α ) × ( c o s ( β ) − b × s i n ( α ) ) a=sin(\alpha)\times(cos(\beta)-b\times sin(\alpha)) a=sin(α)×(cos(β)b×sin(α))

c o s ( α ) = a t a n ( α ) cos(\alpha)=\frac{a}{tan(\alpha)} cos(α)=tan(α)a

​ Integate the relationship and get formula(5)

余弦定理

c o s ( A ) = b 2 + c 2 − a 2 2 b c cos(A) = \frac{b^2+c^2-a^2}{2bc} cos(A)=2bcb2+c2a2

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dEedIvz8-1603461514803)(D:\图片\0.png)]

Proof:

a ⃗ 2 = ( b ⃗ − c ⃗ ) 2 = b 2 + c 2 − 2 b c c o s ( A ) \vec{a}^2=(\vec{b}-\vec{c})^2\\\quad=b^2+c^2-2bccos(A) a 2=(b c )2=b2+c22bccos(A)

​ Integrate and get formula(6)

极限与连续

极限的定义

定义 极限的正式定义

f(x)定义在可能不包含 x 0 x_0 x0的开区间上, 当x趋于 x 0 x_0 x0时f(x)趋于极限L,记为
lim ⁡ x → x 0 f ( x ) = L \lim_{x \to x_0}{f(x)}=L xx0limf(x)=L
如果,对任何数 ϵ > 0 \epsilon>0 ϵ>0,存在相应的数 δ > 0 \delta>0 δ>0使得对所有满足 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ的x,有
∣ f ( x ) − L ∣ < ϵ |f(x)-L|<\epsilon f(x)L<ϵ

定义 右侧极限和左侧极限

设f(x)定义在(a,b)上, a<b,如果在区间(a,b)内趋于a时f(x)任意接近地趋近于L,f在a有右侧极限,记作
lim ⁡ x → a + f ( x ) = L \lim_{x \to a^+}f(x)=L xa+limf(x)=L
设f(x)定义在(c,a)上, c<a,如果在区间(c,a)内趋于a时f(x)任意接近地趋近于L,f在a有左侧极限,记作
lim ⁡ x → a − f ( x ) = L \lim_{x \to a^-}f(x)=L xalimf(x)=L

定理 单侧极限和双侧极限的关系

x → c x \to c xc时函数f(x)有极限当且仅当f的左侧极限和右侧极限存在且相等:
lim ⁡ x → c = L ⇔ lim ⁡ x → c − = L 且 lim ⁡ x → c + = L \lim_{x \to c}=L \Leftrightarrow \lim_{x \to c-}=L 且\lim_{x \to c+}=L xclim=Lxclim=Lxc+lim=L

定义 无穷极限

x趋于 x 0 x_0 x0时f(x)趋于无穷,记作
lim ⁡ x → c = ∞ \lim_{x \to c}=\infty xclim=
如果对于任何正实数B存在相应的 δ > 0 \delta>0 δ>0,使得对一起满足 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ的x,有f(x)>B

x趋于 x 0 x_0 x0时f(x)趋于负无穷,记作
lim ⁡ x → c = − ∞ \lim_{x \to c}=-\infty xclim=
如果对于任何正实数B存在相应的 δ > 0 \delta>0 δ>0,使得对一起满足 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ的x,有f(x)>-B

定义 水平渐近线和垂直渐近线

直线 y = b y=b y=b是函数 y = f ( x ) y=f(x) y=f(x)图形的水平渐近线,如果有
lim ⁡ x → ∞ f ( x ) = b 或 lim ⁡ x → − ∞ f ( x ) = b \lim_{x \to \infty}f(x)=b或\lim_{x \to -\infty}f(x)=b xlimf(x)=bxlimf(x)=b
直线 x = a x=a x=a是函数 y = f ( x ) y=f(x) y=f(x)图形的水平渐近线,如果有
lim ⁡ x → a + f ( x ) = ± ∞ 或 lim ⁡ x → a − f ( x ) = ± ∞ \lim_{x \to a^+}f(x)=\pm\infty或\lim_{x \to a^-}f(x)=\pm\infty xa+limf(x)=±xalimf(x)=±

极限的性质

加减乘除

定理 极限法则

如果L,M,c,k为实数,且
lim ⁡ x → x 0 f ( x ) = L \lim_{x \to x_0}f(x)=L limxx0f(x)=L lim ⁡ x → x 0 g ( x ) = M \lim_{x \to x_0}g(x)=M limxx0g(x)=M
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ &\lim_{x \to c…

求极限

多项式

定理 使用代入法求多项式极限

如果 P ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 0 P(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_0 P(x)=anxn+an1xn1+...+a0,那么
lim ⁡ x → c P ( x ) = P ( c ) \lim_{x \to c}P(x)=P(c) xclimP(x)=P(c)

有理函数

定理 代入法求有理函数的极限

如果P(x)和Q(x)都是多项式且Q©$\neq$0,那么
lim ⁡ x → c P ( x ) Q ( x ) = P ( c ) Q ( c ) \lim_{x \to c}\frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)} xclimQ(x)P(x)=Q(c)P(c)

夹逼定理

定理 夹逼定理

如果在包含c的某个开区间中 x = c x=c x=c处除外的所有x,有 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x) \leq f(x) \leq h(x) g(x)f(x)h(x). 又假设
lim ⁡ x → c g ( x ) = lim ⁡ x → c h ( x ) = L \lim_{x \to c}g(x)=\lim_{x \to c}h(x)=L xclimg(x)=xclimh(x)=L
那么
lim ⁡ x → c f ( x ) = L \lim_{x \to c}f(x)=L xclimf(x)=L

三角函数

定理 sin的极限
lim ⁡ θ → 0 s i n θ θ = 1 \lim_{\theta \to 0}\frac{sin \theta}{\theta}=1 θ0limθsinθ=1

Proof:

​ [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wZutDf5C-1603461514807)(D:\图片\377adab44aed2e7345728f998101a18b86d6fae8.png)]

​ The figure shows
1 2 s i n θ < 1 2 θ < 1 2 t a n θ \frac{1}{2}sin\theta < \frac{1}{2}\theta < \frac{1}{2}tan\theta 21sinθ<21θ<21tanθ
​ Sort the expression and get
1 > s i n θ θ > c o s θ 1>\frac{sin\theta}{\theta}>cos\theta 1>θsinθ>cosθ
​ Also because
lim ⁡ x → 0 c o s θ = 1 \lim_{x \to 0}cos\theta=1 x0limcosθ=1
​ Thus
lim ⁡ x → 0 s i n θ θ = 1 \lim_{x \to 0}{\frac{sin\theta}{\theta}}=1 x0limθsinθ=1

定理 cos的极限
lim ⁡ x → 0 1 − c o s ( x ) x = 0 \lim_{x \to 0}\frac{1-cos (x)}{x}=0 x0limx1cos(x)=0

Proof:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \lim_{x \to 0}…

不定式

定理 L’Hopital法则

假定 f ( x 0 ) = g ( x 0 ) = 0 或 ± ∞ f(x_0)=g(x_0)=0或\pm\infty f(x0)=g(x0)=0±
lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \to x_0}\frac{f(x)}{g(x)}=\lim_{x \to x_0}\frac{f'(x)}{g'(x)} xx0limg(x)f(x)=xx0limg(x)f(x)

Proof:

Let
F ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) g ( b ) − g ( a ) [ g ( x ) − g ( a ) ] F(x)=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}[g(x)-g(a)] F(x)=f(x)f(a)g(b)g(a)f(b)f(a)[g(x)g(a)]
That
F ( a ) = F ( b ) = 0 F(a)=F(b)=0 F(a)=F(b)=0
According to Median Value Theorem,there is figure ‘c’ let
F ′ ( c ) = 0 F'(c)=0 F(c)=0
Which is
f ′ ( c ) g ′ ( c ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)} g(c)f(c)=g(b)g(a)f(b)f(a)
Then compelet the proof of Cauthy Median Value Theorem

Let x right of x 0 x_0 x0

Accourding to CMVT, there is c between x and x o x_o xo let
f ′ ( c ) g ′ ( c ) = f ( x ) − f ( x 0 ) g ( x ) − g ( x 0 ) \frac{f'(c)}{g'(c)}=\frac{f(x)-f(x_0)}{g(x)-g(x_0)} g(c)f(c)=g(x)g(x0)f(x)f(x0)
because f ( x 0 ) = g ( x 0 ) = 0 f(x_0)=g(x_0)=0 f(x0)=g(x0)=0
f ′ ( c ) g ′ ( c ) = f ( x ) g ( x ) \frac{f'(c)}{g'(c)}=\frac{f(x)}{g(x)} g(c)f(c)=g(x)f(x)
because x 0 < c < x x_0<c<x x0<c<x
x 0 → x ⇒ c → x x_0 \to x \Rightarrow c \to x x0xcx
Thus
lim ⁡ x → x 0 + f ( x ) g ( x ) = lim ⁡ x → x 0 + f ′ ( x ) g ′ ( x ) \lim_{x \to x_0+}\frac{f(x)}{g(x)}=\lim_{x \to x_0+}\frac{f'(x)}{g'(x)} xx0+limg(x)f(x)=xx0+limg(x)f(x)
The same
lim ⁡ x → x 0 − f ( x ) g ( x ) = lim ⁡ x → x 0 − f ′ ( x ) g ′ ( x ) \lim_{x \to x_0-}\frac{f(x)}{g(x)}=\lim_{x \to x_0-}\frac{f'(x)}{g'(x)} xx0limg(x)f(x)=xx0limg(x)f(x)
Thus
lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \to x_0}\frac{f(x)}{g(x)}=\lim_{x \to x_0}\frac{f'(x)}{g'(x)} xx0limg(x)f(x)=xx0limg(x)f(x)
then complete proof of the 0 0 \frac{0}{0} 00form of L’Hopital Theorem

Let
F ( x ) = 1 f ( x ) , G ( x ) = 1 g ( x ) F(x)=\frac{1}{f(x)},G(x)=\frac{1}{g(x)} F(x)=f(x)1,G(x)=g(x)1

That
lim ⁡ x → x 0 F ( x ) = ∞ , lim ⁡ x → x 0 G ( x ) = ∞ \lim_{x \to x_0}F(x)=\infty,\lim_{x \to x_0}G(x)=\infty xx0limF(x)=,xx0limG(x)=

Suppose
lim ⁡ x → x 0 F ( x ) G ( x ) = lim ⁡ x → x 0 F ′ ( x ) G ′ ( x ) \lim_{x \to x_0}\frac{F(x)}{G(x)}=\lim_{x \to x_0}\frac{F'(x)}{G'(x)} xx0limG(x)F(x)=xx0limG(x)F(x)

lim ⁡ x → x 0 g ( x ) f ( x ) = lim ⁡ x → x 0 − 1 f 2 ( x ) f ′ ( x ) − 1 g 2 ( x ) g ′ ( x ) = lim ⁡ x → x 0 g 2 ( x ) f ′ ( x ) f 2 ( x ) g ′ ( x ) \lim_{x \to x_0}{\frac{g(x)}{f(x)}}=\lim_{x \to x_0}{\frac{-\frac{1}{f^2(x)}f'(x)}{-\frac{1}{g^2(x)}g'(x)}}=\lim_{x \to x_0}\frac{g^2(x)f'(x)}{f^2(x)g'(x)} xx0limf(x)g(x)=xx0limg2(x)1g(x)f2(x)1f(x)=xx0limf2(x)g(x)g2(x)f(x)

lim ⁡ x → x 0 g ( x ) f ( x ) = lim ⁡ x → x 0 g ′ ( x ) f ′ ( x ) \lim_{x \to x_0}{\frac{g(x)}{f(x)}}=\lim_{x \to x_0}{\frac{g'(x)}{f'(x)}} xx0limf(x)g(x)=xx0limf(x)g(x)

Which is the 0 0 \frac{0}{0} 00form of L’hopital Theorem

Then we have proof the suppose, which is
lim ⁡ x → x 0 F ( x ) G ( x ) = lim ⁡ x → x 0 F ′ ( x ) G ′ ( x ) \lim_{x \to x_0}\frac{F(x)}{G(x)}=\lim_{x \to x_0}\frac{F'(x)}{G'(x)} xx0limG(x)F(x)=xx0limG(x)F(x)
The ∞ ∞ \frac{\infty}{\infty} form of L’Hopital Theorem

连续性的定义

定义 在一点的连续性

内点: 函数f(x)在定义域的内点c处是连续的,如果
lim ⁡ x → c f ( x ) = f ( x ) \lim_{x \to c}f(x)=f(x) xclimf(x)=f(x)
端点: 函数载器定义域的左端点a或右端点b是连续的,如果
lim ⁡ x → a + f ( x ) = f ( a ) lim ⁡ x → b − f ( x ) = f ( b ) \lim_{x \to a^+}f(x)=f(a)\quad\lim_{x \to b^-}f(x)=f(b) xa+limf(x)=f(a)xblimf(x)=f(b)

连续性的性质

加减乘除

定理 连续函数的性质

如果函数f和g在x=c连续,下列函数在x=c连续
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ &f + g \\ &f -…

连续函数的中值定理

定理 连续函数的中值定理

在闭区间[a,b]上连续的函数一定取到f(a)和f(b)之间的每一个值

连续性和可导性

定理 可导性蕴含着连续性

如果f在x=c有导数,那么f在x=c连续

导数

定义

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7eersMhR-1603461514810)(D:\图片\images.jpg)]

定义 导函数

函数f(x)关于变量x的导数是函数f’,它在x处的值为
f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h f'(x)=\lim_{h\to0}{\frac{f(x+h)-f(x)}{h}} f(x)=h0limhf(x+h)f(x)
如果该极限存在

导数的性质

常数倍

d d x ( c u ) = c d d x \frac{\mathrm{d}}{\mathrm{d}x}(cu)=c\frac{\mathrm{d}}{\mathrm{d}x} dxd(cu)=cdxd

d d x ( u + v ) = d u d x + d v d x \frac{\mathrm{d}}{\mathrm{d}x}(u+v)=\frac{\mathrm{d}u}{\mathrm{d}x}+\frac{\mathrm{d}v}{\mathrm{d}x} dxd(u+v)=dxdu+dxdv

d d x ( u v ) = u d v d x + v d u d x \frac{\mathrm{d}}{\mathrm{d}x}(uv)=u\frac{\mathrm{d}v}{\mathrm{d}x}+v\frac{\mathrm{d}u}{\mathrm{d}x} dxd(uv)=udxdv+vdxdu

Proof:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\mathrm{…

d d x ( u v ) = v d u d x − u d v d x v 2 \frac{\mathrm{d}}{\mathrm{d}x}(\frac{u}{v})=\frac{v\frac{\mathrm{d}u}{\mathrm{d}x}-u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2} dxd(vu)=v2vdxduudxdv

Proof:

Regard u v \frac{u}{v} vu as u × 1 v u \times \frac{1}{v} u×v1

According to the Product Rule of the Derivative
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\mathrm{…

复合

d y d x = d y d u ⋅ d u d x \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}u}\cdot\frac{\mathrm{d}u}{\mathrm{d}x} dxdy=dudydxdu

Proof:

d d x f ( g ( x ) ) = f ′ ( g ( x ) ) g ′ ( x ) \frac{\mathrm{d}}{\mathrm{d}x}f(g(x))=f'(g(x))g'(x) dxdf(g(x))=f(g(x))g(x) is another form of d y d x = d y d u ⋅ d u d x \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}u}\cdot\frac{\mathrm{d}u}{\mathrm{d}x} dxdy=dudydxdu

Let
h ( x ) = f ( g ( x ) ) h(x)=f(g(x)) h(x)=f(g(x))
Let
ϵ = g ( x + Δ x ) − g ( x ) \epsilon=g(x+\Delta x)-g(x) ϵ=g(x+Δx)g(x)
That
x → 0 ⇒ ϵ → 0 x \to 0 \Rightarrow \epsilon \to 0 x0ϵ0
Then
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ h'(x)&=\lim_{\…

求导数

常函数

d f d x = d d x ( c ) = 0 \frac{\mathrm{d}f}{\mathrm{d}x}=\frac{\mathrm{d}}{\mathrm{d}x}(c)=0 dxdf=dxd(c)=0

幂函数

d d x ( x n ) = n x n − 1 \frac{\mathrm{d}}{\mathrm{d}x}(x^n)=nx^{n-1} dxd(xn)=nxn1

Proof:
d d x ( x n ) = d d x e ln ⁡ x   n = n x n − 1 \frac{\mathrm{d}}{\mathrm{d}x}(x^n)=\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{e}^{\ln{x}\,n}=nx^{n-1} dxd(xn)=dxdelnxn=nxn1

自然对数

e = lim ⁡ h → 0 + ( 1 + h ) 1 / h \mathrm{e}=\lim_{h \to 0^+}(1+h)^{1/h} e=h0+lim(1+h)1/h

Proof:

let F ( x ) = ∫ 1 x 1 t ( d ) t F(x)=\int_{1}^{x}\frac{1}{t}\mathrm(d)t F(x)=1xt1(d)t

that
F ( 1 ) = 0 lim ⁡ x → ∞ F ( x ) = ∞ d d x F ( x ) = 1 x F(1)=0\\ \lim_{x \to \infty}F(x)=\infty\\ \frac{\mathrm{d}}{\mathrm{d}x}F(x)=\frac{1}{x} F(1)=0xlimF(x)=dxdF(x)=x1
According to Intermediate Value Theorem

There is e \mathrm{}e e let F ( e ) = 1 F(e)=1 F(e)=1

let G ( x ) = F ( x a ) G(x)=F(x^a) G(x)=F(xa)

that
G ′ ( x ) = a 1 x = a F ′ ( x ) G ( x ) = a F ( x ) + C G'(x)=a\frac{1}{x}=aF'(x)\\ G(x)=aF(x)+C G(x)=ax1=aF(x)G(x)=aF(x)+C
let x = 1 ⇒ C = 0 x=1 \Rightarrow C=0 x=1C=0
a F ( x ) = F ( x a ) aF(x)=F(x^a) aF(x)=F(xa)
let x = e , a = x x=\mathrm{e},a=x x=e,a=x

Thus F ( e ) = 1 F(\mathrm{e})=1 F(e)=1
F ( e x ) = x F ( x ) = log ⁡ e x = ln ⁡ ( x ) d d x l n ( x ) = 1 x d d x ( e x ) = e x F(\mathrm{e}^x)=x\\ F(x)=\log_{\mathrm{e}}x=\ln(x)\\ \frac{\mathrm{d}}{\mathrm{d}x}ln(x)=\frac{1}{x}\\ \frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{e}^x)=\mathrm{e}^x F(ex)=xF(x)=logex=ln(x)dxdln(x)=x1dxd(ex)=ex
let y = ( 1 + h ) 1 / h y=(1+h)^{1/h} y=(1+h)1/h

According to the L’Hopital Theorem
lim ⁡ h → 0 + ln ⁡ ( y ) = lim ⁡ h → 0 + ln ⁡ ( 1 + h ) h = 1 \lim_{h \to 0^+}\ln(y)=\lim_{h \to 0^+}\frac{\ln(1+h)}{h}=1 h0+limln(y)=h0+limhln(1+h)=1
Thus ln ⁡ ( e ) = 1 \ln(\mathrm{e})=1 ln(e)=1
e = lim ⁡ h → 0 + ( 1 + h ) 1 / h \mathrm{e}=\lim_{h \to 0^+}(1+h)^{1/h} e=h0+lim(1+h)1/h

d d x log ⁡ b ( x ) = 1 x ln ⁡ ( b ) d d x ln ⁡ ( x ) = 1 x \frac{\mathrm{d}}{\mathrm{d}x}\log_{b}(x)=\frac{1}{x\ln(b)}\\ \frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x} dxdlogb(x)=xln(b)1dxdln(x)=x1

Proof:

According to the definition of derivative
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\mathrm{…
Then
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\mathrm{…

自然指数

d d x ( b x ) = b x ln ⁡ ( b ) d d x ( e x ) = e x \frac{\mathrm{d}}{\mathrm{d}x}(b^x)=b^x\ln(b)\\ \frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{e}^x)=\mathrm{e}^x dxd(bx)=bxln(b)dxd(ex)=ex

Proof:
$$
\begin{align}
y&=b^x\
\log_by&=x\
\frac{\mathrm{d}}{\mathrm{d}x}log_by&=1\
\frac{\mathrm{d}y}{\mathrm{d}x}\frac{1}{\ln(b)y}&=1\
\frac{\mathrm{d}}{\mathrm{d}x}(bx)&=bx\ln(b)

\end{align}
T h e n Then Then
\begin{align}

\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{e}x)&=ex\ln(\mathrm{e})\

&=\mathrm{e}^x

\end{align}
$$

三角函数

d d x s i n ( x ) = c o s ( x ) \frac{\mathrm{d}}{\mathrm{d}x}sin(x)=cos(x) dxdsin(x)=cos(x)

Proof:

According to the definition of the derivative
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\mathrm{…

d d x c o s ( x ) = − s i n ( x ) \frac{\mathrm{d}}{\mathrm{d}x}cos(x)=-sin(x) dxdcos(x)=sin(x)

Proof:

According to the definition of the derivative
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\mathrm{…

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ &\frac{\mathrm…

反三角函数

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ &\frac{\mathrm…

Proof:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ y&=sin^{-1}(x)…
As the same
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ &\frac{\mathrm…

双曲函数

定义 双曲函数
cosh ⁡ x = e x + e − x 2 sinh ⁡ x = e x − e − x 2 tanh ⁡ x = sinh ⁡ x cosh ⁡ x coth ⁡ x = cosh ⁡ x sinh ⁡ x sech ⁡ x = 1 cosh ⁡ x csch ⁡ x = 1 sin ⁡ x \begin{aligned} &\cosh x=\frac{e^{x}+e^{-x}}{2}\\ &\sinh x=\frac{e^{x}-e^{-x}}{2}\\ &\tanh x=\frac{\sinh x}{\cosh x}\\ &\operatorname{coth} x=\frac{\cosh x}{\sinh x}\\ &\operatorname{sech} x=\frac{1}{\cosh x}\\ &\operatorname{csch} x=\frac{1}{\sin x}\\ \end{aligned} coshx=2ex+exsinhx=2exextanhx=coshxsinhxcothx=sinhxcoshxsechx=coshx1cschx=sinx1

性质
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ &\sinh 2x =\si…

导数
d d x sinh ⁡ x = cosh ⁡ x d d x cosh ⁡ x = sinh ⁡ x d d x tanh ⁡ x = sech ⁡ 2 x d d x coth ⁡ x = − csch ⁡ 2 x d d x sech ⁡ x = − sech ⁡ x tan ⁡ x d d x csch ⁡ x = − csch ⁡ x coth ⁡ x \frac{d}{d x} \sinh x=\operatorname{cosh} x \\ \frac{d}{d x} \cosh x=\sinh x \\ \frac{d}{d x} \operatorname{tanh} x=\operatorname{sech}^{2} x \\ \frac{d}{d x} \operatorname{coth} x=-\operatorname{csch}^{2} x \\ \frac{d}{d x} \operatorname{sech} x=-\operatorname{sech} x \tan x \\ \frac{d}{d x} \operatorname{csch} x=-\operatorname{csch} x \operatorname{coth} x dxdsinhx=coshxdxdcoshx=sinhxdxdtanhx=sech2xdxdcothx=csch2xdxdsechx=sechxtanxdxdcschx=cschxcothx

d d x sinh ⁡ − 1 x = 1 1 + x 2 d d x cosh ⁡ − 1 x = 1 x 2 − 1 , x > 1 d a x tanh ⁡ − 1 x = 1 1 − x 2 , ∣ x ∣ < 1 d d x coth ⁡ − 1 x = 1 1 − x 2 , ∣ x ∣ > 1 d d x sech ⁡ − 1 x = − 1 x 1 − x 2 , 0 < x < 1 d d x csch ⁡ − 1 x = − − 1 ∣ x ∣ 1 + x 2 , x ≠ 0 \begin{aligned} \frac{d}{d x} \sinh ^{-1} x &=\frac{1}{\sqrt{1+x^{2}}} \\ \frac{d}{d x} \cosh ^{-1} x &=\frac{1}{\sqrt{x^{2}-1}},x>1 \\ \frac{d}{a x} \tanh ^{-1} x &=\frac{1}{1-x^{2}},|x|<1 \\ \frac{d}{d x} \coth^{-1} x &=\frac{1}{1-x^{2}},|x|>1 \\ \frac{d}{d x} \operatorname{sech} ^{-1} x &=-\frac{1}{x \sqrt{1-x^{2}}},0<x<1 \\ \frac{d}{d x} \operatorname{csch}^{-1} x &=-\frac{-1}{|x|\sqrt{1+x^{2}}},x\ne0 \end{aligned} dxdsinh1xdxdcosh1xaxdtanh1xdxdcoth1xdxdsech1xdxdcsch1x=1+x2 1=x21 1,x>1=1x21,x<1=1x21,x>1=x1x2 1,0<x<1=x1+x2 1,x=0

隐函数

解题 隐函数求导

  1. 处理方程 y=f(x) 方程两边对x求导数
  2. 并项 d y d x \frac{\mathrm{d}y}{\mathrm{d}x} dxdy到一边
  3. 提出因子 d y d x \frac{\mathrm{d}y}{\mathrm{d}x} dxdy
  4. d y d x \frac{\mathrm{d}y}{\mathrm{d}x} dxdy
相关变化率

定义 相关变化率

如果Q为某个量,那么Q的变化率为 d Q d t \frac{\mathrm{d}Q}{\mathrm{d}t} dtdQ

解题 隐函数求导

  1. 对涉及变化率的问题进行建模
  2. 变量对 t t t进行求导, d Q d t \frac{\mathrm{d}Q}{\mathrm{d}t} dtdQ使用已知条件v(变化率)进行替换
  3. 对方程进行求解变量之间的相关变化率

导数的应用

物理中的应用

速度 v = d s d t v=\frac{\mathrm{d}s}{\mathrm{d}t} v=dtds

加速度 a = d v d t a=\frac{\mathrm{d}v}{\mathrm{d}t} a=dtdv

急推 z = d a d t z=\frac{\mathrm{d}a}{\mathrm{d}t} z=dtda

函数的极值

函数的极值

如果函数 f f f在定义域 c c c点取到局部最小值或局部最大值,那么
f ′ ( c ) = 0 或 f ′ ( c ) 不 存 在 f'(c)=0 或 f'(c)不存在 f(c)=0f(c)

中值定理

罗尔定理

假设函数 f f f在闭区间 [ a , b ] [a,b] [a,b]内连续,在开区间 ( a , b ) (a,b) (a,b)可导,如果 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),那么在开区间 ( a , b ) (a,b) (a,b)内至少存在一点 c c c,使得 f ′ ( c ) = 0 f'(c)=0 f(c)=0.

中值定理

假设函数 f f f在闭区间 [ a , b ] [a,b] [a,b]内连续,在开区间 ( a , b ) (a,b) (a,b)可导,如果 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),那么在开区间 ( a , b ) (a,b) (a,b)内至少存在一点 c c c,使得
f ′ ( c ) = f ( b ) − f ( a ) b − a f'(c)=\frac{f(b)-f(a)}{b-a} f(c)=baf(b)f(a)

Proof:

let g ( x ) = f ( x ) − f ( b ) − f ( a ) b − a ( x − a ) g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a) g(x)=f(x)baf(b)f(a)(xa)

that
g ( a ) = g ( b ) = f ( a ) g(a)=g(b)=f(a) g(a)=g(b)=f(a)
According to Rolle Theorem

There is c let g ′ ( x ) = 0 g'(x)=0 g(x)=0 which is
g ′ ( x ) = f ′ ( x ) − f ( b ) − f ( a ) b − a f ′ ( c ) = f ( b ) − f ( a ) b − a g'(x)=f'(x)-\frac{f(b)-f(a)}{b-a}\\ f'(c)=\frac{f(b)-f(a)}{b-a} g(x)=f(x)baf(b)f(a)f(c)=baf(b)f(a)

最优化

解决最优化问题

  1. 分析问题,数学建模
  2. 求导使用函数极值解决最优化问题

线性化

使用线性化进行估值
f ( a + Δ x ) ≈ f ( a ) + f ′ ( a ) Δ x f(a+\Delta x) \approx f(a)+f'(a)\Delta x f(a+Δx)f(a)+f(a)Δx

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-V20taVHQ-1603461514814)(D:\图片\1209131-20200314112302318-893749689.png)]

Newton法

Newton法

a a a f ( x ) = 0 f(x)=0 f(x)=0的近似解
b = a − f ( a ) f ′ ( a ) b=a-\frac{f(a)}{f'(a)} b=af(a)f(a)
b b b为更优解

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5977I6BQ-1603461514816)(D:\图片\OIP.jpg)]

积分

定义

定义 定积分作为黎曼和的极限

设f时定义在区间[a,b]的一个函数, 对于[a,b]的任意划分P,设 c k c_k ck是在子区间 [ x k − 1 , x k ] [x_{k-1},x_k] [xk1,xk]上任意选取的数.

如果存在一个数I,使得不论划分P怎样和 c k c_k ck如何选取,都有
lim ⁡ ∣ ∣ P ∣ ∣ → 0 ∑ k = 1 n f ( c k ) Δ x k = I \lim_{||P|| \to 0}\sum_{k=1}^{n}f(c_k)\Delta x_k = I P0limk=1nf(ck)Δxk=I
则称f在[a,b]上是可积的,而I称为f在区间[a,b]上的定积分
I = ∫ a b f ( x ) d x I=\int_a^bf(x)\mathrm{d}x I=abf(x)dx

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wwwUOgx5-1603461514817)(D:\图片\v2-ffb6bd83ee0d17e23df7a226d8f706f5_r.jpg)]

性质

定积分性质
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ &\int_a^bf(x)\…

微积分基本定理

微积分第一基本定理(不定积分为反导数)
d d x ∫ a x f ( t ) d t = f ( x ) \frac{d}{d x}\int_a^xf(t)\mathrm{d}t=f(x) dxdaxf(t)dt=f(x)

Proof:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{d}{d x}\…

微积分第二基本定理
∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^bf(x)\mathrm{d}x=F(b)-F(a) abf(x)dx=F(b)F(a)

Proof:

let F ( x ) = ∫ a x f ( t ) d t F(x)=\int_a^xf(t)\mathrm{d}t F(x)=axf(t)dt
F ( a ) = 0 F ( b ) = ∫ a b f ( t ) d t F(a)=0\\ F(b)=\int_a^bf(t)\mathrm{d}t F(a)=0F(b)=abf(t)dt
let G ( x ) = F ( x ) + C G(x)=F(x)+C G(x)=F(x)+C
G ( a ) = C G(a)=C G(a)=C

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ &F(x)=G(x)-C=G…

求积分方法

积分公式

∫ d u = u + c ∫ k d u = k u + c ∫ d u + d v = ∫ d u + ∫ d v ∫ u n d u = u n + 1 n + 1 + C ∫ 1 u d u = ln ⁡ ∣ u ∣ + c ∫ sin ⁡ u d u = − cos ⁡ u + c ∫ cos ⁡ u d u = sin ⁡ u + c ∫ sec ⁡ u d u = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + c ∫ csc ⁡ u d u = − ln ⁡ ∣ csc ⁡ x + cot ⁡ x ∣ + c ∫ sec ⁡ 2 u d u = tan ⁡ u + c ∫ csc ⁡ 2 u d u = − cot ⁡ u + c ∫ sec ⁡ u tan ⁡ u d u = sec ⁡ u + c ∫ csc ⁡ u cot ⁡ u d u = − csc ⁡ u + c ∫ tan ⁡ u d u = ln ⁡ ∣ sec ⁡ u ∣ + C ∫ cot ⁡ u d u = ln ⁡ ∣ sin ⁡ u ∣ + C ∫ e u d u = e u + c ∫ a u d u = a u ln ⁡ a + c ∫ sinh ⁡ u d u = cosh ⁡ u d x + c ∫ cosh ⁡ u d u = sinh ⁡ u + c ∫ d u a 2 − u 2 = sin ⁡ − 1 ( u a ) + c ∫ d u u 2 − a 2 = cos ⁡ h − 1 ( u a ) + c ∫ d u a 2 + u 2 = sinh ⁡ − 1 ( u a ) + c ∫ d u a 2 + u 2 = 1 a tan ⁡ − 1 ( u a ) + c ∫ d u u u 2 − a 2 = 1 a sec ⁡ − 1 ( u a ) + C \begin{aligned} &\int d u=u+c\\ &\int k d u=k u+c\\ &\int du + dv=\int d u+\int d v\\ &\int u^{n} d u=\frac{u^{n+1}}{n+1}+C\\ &\int \frac{1}{u} d u=\ln |u|+c\\ &\int \sin u d u=-\cos u+c\\ &\int \cos u d u=\sin u+c\\ &\int \sec u d u=\ln |\sec x+\tan x|+c\\ &\int \csc u d u=-\ln |\csc x+\cot x|+c\\ &\int \sec ^{2} u d u=\tan u+c\\ &\int \csc ^{2} u d u=-\cot u+c\\ &\int \sec u \tan u d u=\sec u+c\\ &\int \csc u \cot u d u=-\csc u+c\\ &\int \tan u d u=\ln |\sec u|+C\\ &\int \cot u d u=\ln |\sin u|+C\\ &\int e^{u} d u=e^{u}+c \\ &\int a^{u} d u=\frac{a^{u}}{\ln a}+c\\ &\int \sinh u d u=\cosh u d x+c\\ &\int \cosh u d u=\sinh u+c\\ &\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1}\left(\frac{u}{a}\right)+c\\ &\int \frac{d u}{\sqrt{u^{2}-a^{2}}}=\cos h^{-1}\left(\frac{u}{a}\right)+c \\ &\int \frac{d u}{\sqrt{a^{2}+u^{2}}}=\sinh ^{-1}\left(\frac{u}{a}\right)+c \\ &\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+c\\ &\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1}\left(\frac{u}{a}\right)+C \end{aligned} du=u+ckdu=ku+cdu+dv=du+dvundu=n+1un+1+Cu1du=lnu+csinudu=cosu+ccosudu=sinu+csecudu=lnsecx+tanx+ccscudu=lncscx+cotx+csec2udu=tanu+ccsc2udu=cotu+csecutanudu=secu+ccscucotudu=cscu+ctanudu=lnsecu+Ccotudu=lnsinu+Ceudu=eu+caudu=lnaau+csinhudu=coshudx+ccoshudu=sinhu+ca2u2 du=sin1(au)+cu2a2 du=cosh1(au)+ca2+u2 du=sinh1(au)+ca2+u2du=a1tan1(au)+cuu2a2 du=a1sec1(au)+C

变量替换

替换积分法

当f和g’是连续函数时,为求积分 ∫ f ( g ( x ) ) g ′ ( x ) d x \int f(g(x))g'(x)dx f(g(x))g(x)dx

  1. 做替换 u = g ( x ) u=g(x) u=g(x),则 d u = g ′ ( x ) d x du=g'(x)dx du=g(x)dx,得到积分 ∫ f ( u ) d u \int f(u)du f(u)du
  2. 对u积分
  3. 使用g(x)替代u

定积分的变量替换
∫ a b f ( g ( x ) ) ⋅ g ′ ( x ) d x = ∫ g ( a ) g ( b ) f ( u ) d u \int _a^bf(g(x))\cdot g'(x)dx=\int_{g(a)}^{g(b)}f(u)du abf(g(x))g(x)dx=g(a)g(b)f(u)du

分部积分

分部积分公式
∫ u d v = u v − ∫ v d u \int u\mathrm{d}v=uv-\int v\mathrm{d}u udv=uvvdu

Proof:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\mathrm{…

部分分式

部分分式

三角换元

三角替换

  1. x = a t a n θ x=atan\theta x=atanθ a 2 + x 2 = a 2 s e c 2 θ a^2+x^2=a^2sec^2\theta a2+x2=a2sec2θ
  2. x = a s i n θ x=asin\theta x=asinθ a 2 − x 2 = a 2 c o s 2 θ a^2-x^2=a^2cos^2\theta a2x2=a2cos2θ
  3. x = a s e c θ x=asec\theta x=asecθ x 2 − a 2 = a 2 t a n 2 θ x^2-a^2=a^2tan^2\theta x2a2=a2tan2θ
估算积分

积分的应用

计算体积

切片法

旋转轴为y=h
V = ∫ a b π ( y − h ) 2 d x V=\int_a^b\pi (y-h)^2 dx V=abπ(yh)2dx

壳法

旋转轴为x=h
V = ∫ a b 2 π ( x − h ) y d x V=\int_a^b2\pi(x-h)ydx V=ab2π(xh)ydx

椎体体积

椎体体积
V = ∫ 0 h A ( x ) d x = 1 3 A h V=\int_0^hA(x)dx=\frac{1}{3}Ah V=0hA(x)dx=31Ah

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-S3M0jPdA-1603461514818)(D:\图片\v2-5c98826ace08a7cd67f6efc089c2911b_r.jpg)]

Proof:
KaTeX parse error: No such environment: align at position 16: {align} \begin{̲a̲l̲i̲g̲n̲}̲ \frac{x}{l}=\f… {align}

计算弧长

L = ∫ a b 1 + ( d y d x ) 2 d x L = ∫ t 0 t 1 ( d y d t ) 2 + ( d x d t ) 2 d x L = ∫ θ 0 θ 1 f ( θ ) 2 + f ′ ( θ ) 2 d x L=\int_a^b \sqrt{1+(\frac{dy}{dx})^2}dx\\ L=\int_{t_0}^{t_1} \sqrt{(\frac{dy}{dt})^2+(\frac{dx}{dt})^2}dx\\ L=\int_{\theta_0}^{\theta_1} \sqrt{f(\theta)^2+f'(\theta)^2}dx L=ab1+(dxdy)2 dxL=t0t1(dtdy)2+(dtdx)2 dxL=θ0θ1f(θ)2+f(θ)2 dx

计算旋转体表面积

S = ∫ a b 2 π y 1 + ( d y d x ) 2 d x S = ∫ t 0 t 1 2 π y ( d y d t ) 2 + ( d x d t ) 2 d t S=\int_a^b2\pi y\sqrt{1+(\frac{dy}{dx})^2}dx\\ S=\int_{t_0}^{t_1}2\pi y\sqrt{(\frac{dy}{dt})^2+(\frac{dx}{dt})^2}dt S=ab2πy1+(dxdy)2 dxS=t0t12πy(dtdy)2+(dtdx)2 dt

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Su9S4nac-1603461514819)(D:\图片\u=3394157897,2860278749&fm=26&gp=0.jpg)]

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值