微积分学习笔记(2)--修改更新中

微积分(2)

微分方程

可分离变量的微分方程

指数变化率

如果y以正比与当前数量的速率变化( d y d t = k y \frac{\mathrm{d}y}{\mathrm{d}t}=ky dtdy=ky)并且当t=0时 y = y 0 y=y_0 y=y0,则
y = y 0 e k t y=y_0\mathrm{e}^{kt} y=y0ekt
k>0表示增长, k<0表示衰减,k为速率常数

Proof:

Solve differential equations with separable varaibles

  1. separate varaibles
    KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\mathrm{…

  2. Intefral at both ends of the equation
    KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \int \frac{1}{…

  3. Simplify the equation
    y = y 0 e k t y=y_0\mathrm{e}^{kt} y=y0ekt

线性一阶微分方程

线性一阶微分方程的解

线性方程
d y d x + P ( x ) y = Q ( x ) \frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x) dxdy+P(x)y=Q(x)
的解为
y = 1 v ( x ) ∫ v ( x ) Q ( x ) d x y=\frac{1}{v(x)}\int v(x)Q(x)\mathrm{d}x y=v(x)1v(x)Q(x)dx
其中
v ( x ) = e ∫ P ( x ) d x v(x)=\mathrm{e}^{\int P(x)\mathrm{d}x} v(x)=eP(x)dx

Proof:

Inspired by the Deravitive Product Rule d y d x ( v y ) = y ′ v + y v ′ \frac{\mathrm{d}y}{\mathrm{d}x}(vy)=y'v+yv' dxdy(vy)=yv+yv

Product v(x) to the both ends of the equation, turn it to the form of DPR
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ v(x)\frac{\mat…
For v(x)
d v d x = v ( x ) P ( x ) v ( x ) = e ∫ P ( x ) d x \frac{\mathrm{dv}}{\mathrm{d}x}=v(x)P(x)\\ v(x)=\mathrm{e}^{\int P(x)\mathrm{d}x} dxdv=v(x)P(x)v(x)=eP(x)dx

高阶微分方程

反常积分

定义

定义 有穷积分限的反常积分

有穷积分限的积分是反常积分

  1. 如果f(x)在 [ a , ∞ ) [a,\infty) [a,)是连续的,则
    ∫ a ∞ f ( x ) d x = lim ⁡ N → ∞ ∫ a N f ( x ) d x \int_a^{\infty}f(x)\mathrm{d}x=\lim_{N \to \infty}\int_a^{N}f(x)\mathrm{d}x af(x)dx=NlimaNf(x)dx

  2. 如果f(x)在 ( − ∞ , b ] (-\infty,b] (,b]是连续的,则
    ∫ ∞ b f ( x ) d x = lim ⁡ N → − ∞ ∫ N b f ( x ) d x \int_{\infty}^bf(x)\mathrm{d}x=\lim_{N \to -\infty}\int_N^bf(x)\mathrm{d}x bf(x)dx=NlimNbf(x)dx

  3. 如果f(x)在 ( − ∞ , ∞ ) (-\infty,\infty) (,)是连续的,则
    ∫ − ∞ ∞ f ( x ) d x = ∫ − ∞ c f ( x ) d x + ∫ c ∞ f ( x ) d x \int_{-\infty}^{\infty}f(x)\mathrm{d}x=\int_{-\infty}^{c}f(x)\mathrm{d}x+\int_{c}^{\infty}f(x)\mathrm{d}x f(x)dx=cf(x)dx+cf(x)dx

定义 无界不连续函数的反常积分

  1. 如果f(x)在 [ a , b ) [a,b) [a,b)是连续的,则
    ∫ a b f ( x ) d x = lim ⁡ N → b − ∫ a N f ( x ) d x \int_a^bf(x)\mathrm{d}x=\lim_{N \to b^-}\int_a^Nf(x)\mathrm{d}x abf(x)dx=NblimaNf(x)dx

  2. 如果f(x)在 ( a , b ] (a,b] (a,b]是连续的,则
    ∫ a b f ( x ) d x = lim ⁡ N → a + ∫ N b f ( x ) d x \int_{a}^bf(x)\mathrm{d}x=\lim_{N \to a^+}\int_N^bf(x)\mathrm{d}x abf(x)dx=Na+limNbf(x)dx

  3. 如果f(x)在 ( a , b ) (a,b) (a,b)是连续的,则
    ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{b}f(x)\mathrm{d}x=\int_{a}^{c}f(x)\mathrm{d}x+\int_{c}^{b}f(x)\mathrm{d}x abf(x)dx=acf(x)dx+cbf(x)dx

无穷级数

数列的极限

定义

定义 收敛,发散,极限

极限序列{ a n a_n an}收敛到数L,如果每个正数 ε \varepsilon ε,都对应一个整数,使得对所有n:
n > N ⇒ ∣ a n − L ∣ < ε n>N\Rightarrow|a_n-L|<\varepsilon n>NanL<ε
如果这样的数L不存在,我们说{ a n a_n an}发散.

若{ a n a_n an}收敛到数L,我们记成 lim ⁡ n → ∞ = L \lim_{n \to \infty}=L nlim=L,或简单记成 a n → L a_n\to L anL,并称L是序列{ a n a_n an}的极限

无穷级数

发散级数

发散级数的第n项判别法

lim ⁡ n → ∞ a n \lim_{n \to \infty}a_n nliman不存在或异于零,则级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an发散

收敛级数

收敛级数的第n项极限

∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an收敛,则 a n → 0 a_n \to 0 an0

几何级数

几何级数
a n = a r n − 1 S n = a 1 ( 1 − r n ) 1 − r a_n=ar^{n-1}\\ S_n=\frac{a_1(1-r^n)}{1-r}\\ an=arn1Sn=1ra1(1rn)

Proof:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ s_n&=a+ar+ar^2…

几何级数的收敛和发散
∑ n = 1 ∞ a r n − 1 = a 1 1 − r \sum_{n=1}^{\infty}ar^{n-1}=\frac{a_1}{1-r} n=1arn1=1ra1
当|r|<1是收敛的上式,当|r| ≥ \geq 1时发散

p级数

P级数
∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infty}\frac{1}{n^p} n=1np1
当p>1时收敛,当p ≤ \leq 1时发散

Proof:

According to the Integral Method
KaTeX parse error: No such environment: align at position 90: …rm{d}x\\ \begin{̲a̲l̲i̲g̲n̲}̲ \int_{n=1}^{\i…

非负项级数
  1. 积分判别法

    { a n } 是 一 个 正 数 序 列 , f ( x ) 是 x 的 连 续 函 数 , a n = f ( n ) . 则 级 数 ∑ n = N ∞ a n 和 ∫ n = N ∞ f ( x ) d x 同 时 收 敛 或 发 散 \{a_n\}是一个正数序列,f(x)是x的连续函数,a_n=f(n).则级数\sum_{n=N}^{\infty}a_n和\int_{n=N}^{\infty}f(x)\mathrm{d}x同时收敛或发散 {an},f(x)x,an=f(n).n=Nann=Nf(x)dx

    Proof:
    ∫ 1 n + 1 f ( x ) d x ≤ a 1 + a 2 + ⋯ + a n , ( 估 算 积 分 取 上 和 ) ∫ 1 n + 1 f ( x ) d x 发 散 ⇒ ∑ n = N ∞ a n 发 散 ∫ 1 n + 1 f ( x ) d x + a 1 ≥ a 1 + a 2 + ⋯ + a n , ( 估 算 积 分 取 下 和 ) ∫ 1 n + 1 f ( x ) d x 收 敛 ⇒ ∑ n = N ∞ a n 收 敛 \int_1^{n+1}f(x)dx\leq a_1+a_2+\dots+a_n,(估算积分取上和)\\ \int_1^{n+1}f(x)dx发散\Rightarrow\sum_{n=N}^{\infty}a_n发散\\ \int_1^{n+1}f(x)dx+a_1\geq a_1+a_2+\dots+a_n,(估算积分取下和)\\ \int_1^{n+1}f(x)dx收敛\Rightarrow\sum_{n=N}^{\infty}a_n收敛 1n+1f(x)dxa1+a2++an,()1n+1f(x)dxn=Nan1n+1f(x)dx+a1a1+a2++an,()1n+1f(x)dxn=Nan

  2. 比较判别法

    ∑ a n \sum a_n an是非负项级数

    1. 如果存在收敛级数 ∑ c n \sum c_n cn和整数N,使得n>N有 a n ≤ c n a_n\leq c_n ancn,则 ∑ a n \sum a_n an收敛
    2. 如果存在非负项发散级数 ∑ b n \sum b_n bn和整数N,使得n>N有 a n ≥ c n a_n\geq c_n ancn,则 ∑ a n \sum a_n an发散
  3. 极限比较判别法

    1. lim ⁡ n → ∞ a n b n = c \lim_{n\to \infty}\frac{a_n}{b_n}=c nlimbnan=c,0<c< ∞ \infty ,则 ∑ a n \sum a_n an ∑ b n \sum b_n bn同时收敛或发散
    2. lim ⁡ n → ∞ a n b n = 0 \lim_{n\to \infty}\frac{a_n}{b_n}=0 nlimbnan=0, ∑ b n \sum b_n bn收敛,则 ∑ a n \sum a_n an收敛
    3. lim ⁡ n → ∞ a n b n = ∞ \lim_{n\to \infty}\frac{a_n}{b_n}=\infty nlimbnan=, ∑ b n \sum b_n bn发散,则 ∑ a n \sum a_n an发散
  4. 比试判别法

    lim ⁡ n → ∞ a n + 1 a n = p \lim_{n \to \infty}\frac{a_{n+1}}{a_n}=p nlimanan+1=p

    1. p<1:收敛
    2. p>1:发散
    3. p=1:无定论
  5. n次根示判别法

    lim ⁡ n → ∞ a n n = p \lim_{n \to \infty}\sqrt[n]a_n=p nlimna n=p

    1. p<1:收敛
    2. p>1:发散
    3. p=1:无定论
交错级数

交错级数判别法

级数
∑ n = 1 ∞ ( − 1 ) n + 1 u n \sum_{n=1}^{\infty}(-1)^{n+1}u_n n=1(1)n+1un
收敛,如果一下条件满足:

  1. u n u_n un全是正的
  2. u n u_n un递减
  3. u n → 0 u_n \to 0 un0

并且 ∣ L − s n ∣ < u n + 1 |L-s_n|<u_{n+1} Lsn<un+1并且 ∣ L − s n ∣ |L-s_n| Lsn u n + 1 u_{n+1} un+1同号

Proof:

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ s_{2m} &= (u_1…
According to the first line and condition(1)(2), s 2 m s_{2m} s2mis increase

According to the second line and condition(1)(2), s 2 m < u 1 s_{2m}<u_1 s2m<u1
lim ⁡ m → ∞ s 2 m = L \lim_{m\to\infty}s_{2m}=L mlims2m=L
According to the condition(3)
lim ⁡ m → ∞ u 2 m + 1 = 0 lim ⁡ m → ∞ s 2 m + 1 = L + 0 = L \lim_{m\to\infty}u_{2m+1}=0\\ \lim_{m\to\infty}s_{2m+1}=L+0=L mlimu2m+1=0mlims2m+1=L+0=L

绝对收敛
∑ n = 1 ∞ ∣ a n ∣ 收 敛 ⇒ ∑ n = 1 ∞ a n 收 敛 \sum_{n=1}^{\infty}|a_n|收敛\Rightarrow \sum_{n=1}^{\infty}a_n收敛 n=1ann=1an

Proof:
a n ≤ ∣ a n ∣ ∑ n = 0 ∞ a n ≤ ∑ n = 0 ∞ ∣ a n ∣ ∑ n = 0 ∞ ∣ a n ∣ 收 敛 ⇒ ∑ n = 0 ∞ 收 敛 a_n\leq|a_n|\\ \sum_{n=0}^{\infty}a_n\leq\sum_{n=0}^{\infty}|a_n|\\ \sum_{n=0}^{\infty}|a_n|收敛\Rightarrow\sum_{n=0}^{\infty}收敛 anann=0ann=0ann=0ann=0

幂级数

定义

中心在a的幂级数:
∑ n = 0 ∞ c n ( x − a ) n \sum_{n=0}^{\infty}c_n(x-a)^n n=0cn(xa)n

性质

逐项求导定理
f ( x ) = ∑ n = 0 ∞ c n ( x − a ) n , ∣ x − a ∣ < R f(x)=\sum_{n=0}^{\infty}c_n(x-a)^n,|x-a|<R f(x)=n=0cn(xa)n,xa<R
f(x)在收敛区间的所有阶导数, 可以逐项求导原级数得到

逐项积分定理
f ( x ) = ∑ n = 0 ∞ c n ( x − a ) n , ∣ x − a ∣ < R f(x)=\sum_{n=0}^{\infty}c_n(x-a)^n,|x-a|<R f(x)=n=0cn(xa)n,xa<R
f(x)在收敛区间的积分, 可以逐项积分原级数得到

收敛性

幂级数收敛定理

对于 ∑ n = 0 ∞ c n ( x − a ) n \sum_{n=0}^{\infty}c_n(x-a)^n n=0cn(xa)n的收敛有三种可能.

  1. |x-a|>R发散,|x-a|<R收敛,在a+R和a-R,可能收敛也可能发散
  2. 级数对每个x收敛
  3. 级数在x=a收敛,在其余的点发散

求收敛区间

  1. 使用比值判别法n次判别法求使函数绝对收敛的区间
  2. 带入端点值进行检验(使用非负项级数判别法)
应用

Taylor级数

  1. 假设光滑函数可以用多项式函数逼近
    f ( x ) = c 0 + c 1 ( x − a ) + c 2 ( x − a ) 2 + ⋯ + c n ( x − a ) n f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n} f(x)=c0+c1(xa)+c2(xa)2++cn(xa)n

  2. 使用麦克劳林待定系数法 f ( n ) ( x ) = P ( n ) ( x ) f^{(n)}(x)=P^{(n)}(x) f(n)(x)=P(n)(x)
    KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ &f^{(1)}(x)=c_…

  3. 讨论taylor级数和原函数的差值

R n = f ( x ) − P N ( x ) = f ( x ) − ( f ( a ) + f ′ ( a ) 1 ! ( x − a ) + ⋯ + f ( n ) ( a ) n ! ( x − a ) n ) \begin{aligned} R_{n} &=f(x)-P_{N}(x) \\ &=f(x)-\left(f(a)+\frac{f'(a)}{1 !}(x-a)+\cdots+\frac{f^{(n)}(a)}{n !}(x-a)^{n}\right) \end{aligned} Rn=f(x)PN(x)=f(x)(f(a)+1!f(a)(xa)++n!f(n)(a)(xa)n)

​ 做辅助函数 g ( t ) = f ( x ) − ( f ( t ) + f ′ ( t ) 1 ! ( x − t ) + ⋯ + f ( n ) ( x ) n ! ( x − t ) n ) , t ∈ [ a , x ] g(t)=f(x)-(f(t)+\frac{f'(t)}{1!}(x-t)+\cdots+\frac{f^{(n)}(x)}{n!}(x-t)^{n}),t\in[a,x] g(t)=f(x)(f(t)+1!f(t)(xt)++n!f(n)(x)(xt)n),t[a,x]
g ′ ( t ) = − f n + 1 ( t ) n ! ( x − t ) n g ( x ) = 0 g ( a ) = R N ( x ) g'(t)=-\frac{f^{n+1}(t)}{n!}(x-t)^{n}\\ g(x)=0\\ g(a)=R_N(x) g(t)=n!fn+1(t)(xt)ng(x)=0g(a)=RN(x)
​ 做辅助函数 h ( t ) = ( x − t ) ( n + 1 ) h(t)=(x-t)^{(n+1)} h(t)=(xt)(n+1)
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ &h^{\prime}(t)…
​ 由Cauthy MVT得
g ( x ) − g ( a ) h ( x ) − h ( a ) = g ′ ( c ) h ′ ( c ) c ∈ [ a , x ] \frac{g(x)-g(a)}{h(x)-h(a)}=\frac{g^{\prime}(c)}{h^{\prime}(c)} \quad c \in[a, x] h(x)h(a)g(x)g(a)=h(c)g(c)c[a,x]
​ 解的
R N ( x ) = f ( n + 1 ) ( C ) ( n + 1 ) ! ( x − a ) ( n + 1 ) R_{N}(x)=\frac{f^{(n+1)}(C)}{(n+1) !}(x-a)^{(n+1)} RN(x)=(n+1)!f(n+1)(C)(xa)(n+1)

  1. 在所有N次或N次一下的多项式中,P是在a附近最佳近似

    Q为级数不超过N的多项式
    ∣ f ( x ) − P N ( x ) ∣ < ∣ f ( x ) − Q N ( x ) ∣ ∣ R N ( x ) ∣ < ∣ S ( x ) + R N ( x ) ∣ , S ( x ) = P N ( x ) − R N ( x ) |f(x)-P_N(x)|<|f(x)-Q_N(x)|\\ |R_N(x)|<|S(x)+R_N(x)|,S(x)=P_N(x)-R_N(x) f(x)PN(x)<f(x)QN(x)RN(x)<S(x)+RN(x),S(x)=PN(x)RN(x)

    1. x → a 时 , c → a x \to a时,c \to a xa,ca
      ∣ R N ( x ) ∣ = ∣ f ( N + 1 ) ( x ) ( N + 1 ) ! ( x − a ) N + 1 ∣ ∼ f ( x + 1 ) ( a ) ( N + 1 ) ! ( x − a ) N + 1 \begin{aligned} \left|R_{N}(x)\right| &=\left|\frac{f^{(N+1)}(x)}{(N+1) !}(x-a)^{N+1}\right| \sim \frac{f^{(x+1)}(a)}{(N+1) !}(x-a)^{N+1} \end{aligned} RN(x)=(N+1)!f(N+1)(x)(xa)N+1(N+1)!f(x+1)(a)(xa)N+1

    2. S ( x ) = a m ( x − a ) m + … S(x)=a_m(x-a)^m+\dots S(x)=am(xa)m+其中 a m ( x − a ) m a_m(x-a)^m am(xa)m为最低项,0<m<n
      S ( x ) ∼ a m ( x − a ) m R N ( x ) ∼ C ( x − a ) N + 1 , C = f ( N + 1 ) ( a ) ( N + 1 ) ! ∵ m < M + 1 ∴ S ( x ) + R N ( x ) ∼ a m ( x − a ) m \begin{aligned} &S(x) \sim a m(x-a)^{m}\\ &R_{N}(x) \sim C(x-a)^{N+1},C=\frac{f^{(N+1)}(a)}{(N+1) !}\\ &\because m<M+1\\ &\therefore S(x)+R_N(x)\sim a_m(x-a)^m\\ \end{aligned} S(x)am(xa)mRN(x)C(xa)N+1,C=(N+1)!f(N+1)(a)m<M+1S(x)+RN(x)am(xa)m


    ∣ f ( x ) − P N ( x ) ∣ ∼ ∣ c ∣ ∣ x − a ∣ N + 1 ∣ f ( x ) − Q N ( x ) ∣ ∼ ∣ a m ∣ ∣ x − a ∣ m ∣ c ∣ ∣ x − a ∣ N + 1 ∣ a m ∣ ∣ x − a ∣ m = C 1 ∣ x − a ∣ − m + N − 1 当 x → a 时 , C 1 ∣ x − a ∣ − m + N − 1 → 0 ∣ c ∣ ∣ x − a ∣ N + 1 < ∣ a m ∣ ∣ x − a ∣ m ∣ f ( x ) − P N ( x ) ∣ < ∣ f ( x ) − Q N ( x ) ∣ \begin{aligned} &|f(x)-P_{N}(x)| \sim |c||x-a|^{N+1}\\ &|f(x)-Q_N(x)| \sim |a_{m}||x-a|^{m}\\ \\ &\frac{|c||x-a|^{N+1}}{|a_{m}||x-a|^{m}}=C_1|x-a|^{-m+N-1}\\ &当x \to a时,C_1|x-a|^{-m+N-1} \to 0\\ &|c||x-a|^{N+1}<|a_{m}||x-a|^{m}\\ &|f(x)-P_N(x)|<|f(x)-Q_N(x)| \end{aligned} f(x)PN(x)cxaN+1f(x)QN(x)amxamamxamcxaN+1=C1xam+N1xa,C1xam+N10cxaN+1<amxamf(x)PN(x)<f(x)QN(x)

  2. 得出结论
    f ( x ) = ∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^{n} f(x)=n=0n!f(n)(a)(xa)n

Fourier级数

  1. 假设周期函数f(x)能表示为三角函数之和
    f ( x ) = A 0 + ∑ i = h ∞ A n n π x L + φ n , T ( 周 期 ) = 2 L f(x)=A_{0}+\sum_{i=h}^{\infty}A_n \frac{n \pi x}{L}+\varphi_{n},T(周期)=2L f(x)=A0+i=hAnLnπx+φn,T()=2L

  2. 通过和角公式合并常数
    A n sin ⁡ ( n π x L + φ n ) = A n sin ⁡ ψ n cos ⁡ ( n π x L ) + A n cos ⁡ ψ n cos ⁡ ( n π x L ) f ( x ) = A 0 + ∑ n = 1 ∞ [ a n cos ⁡ ( n π x L ) + b n sin ⁡ ( n π x L ) ] \begin{aligned} &A_{n} \sin \left(\frac{n \pi x}{L}+\varphi_{n}\right)=A_{n} \sin \psi_{n} \cos \left(\frac{n \pi x}{L}\right)+A_{n} \cos \psi_{n} \cos \left(\frac{n \pi x}{L}\right)\\ &f(x)=A_{0}+\sum_{n=1}^{\infty}[ a_{n} \cos (\frac{n \pi x}{L})+b_{n} \sin (\frac{n \pi x}{L}) ] \end{aligned} Ansin(Lnπx+φn)=Ansinψncos(Lnπx)+Ancosψncos(Lnπx)f(x)=A0+n=1[ancos(Lnπx)+bnsin(Lnπx)]

  3. 通过三角积分球未知数 ∫ − L L f ( x ) d x = ∫ − L L F ( x ) d x \int_{-L}^Lf(x)\mathrm{d}x=\int_{-L}^LF(x)\mathrm{d}x LLf(x)dx=LLF(x)dx

    三角积分
    $$
    \begin{aligned}

    &\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) d x=0 \
    &\int_{-L}^{L} \sin \left(\frac{1 \pi x}{L}\right) d x=0 \
    &\int_{-L}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=\left{\begin{array}{l}
    0 . m \neq n \
    L, m=n
    \end{array}\right.\
    &\int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x=0\
    &\int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=\left{\begin{array}{l}
    0, m \neq n \
    L, m=n
    \end{array}\right.
    \end{aligned}
    P r o o f : Proof: Proof:
    \begin{align}
    \cos (\alpha) \cos (\beta)&=\frac{1}{2}[\cos (\alpha+\beta)-\cos (\alpha-\beta)] \
    \sin (\alpha) \sin (\beta)&=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)] \
    \sin (\alpha) \cos (\beta)&=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)] \
    \end{align}
    ( 3 ) (3) (3)
    \begin{align}
    \int^{L}{-L}cos(\frac{n \pi x}{L})cos(\frac{m \pi x}{L})\mathrm{d}x&=\frac{1}{2}[\int{-L}^{L}cos(\frac{n \pi x}{L}+\frac{m \pi x}{L})\mathrm{d}x+\int_{-L}^{L}cos(\frac{n \pi x}{L}-\frac{m \pi x}{L})\mathrm{d}x]\
    m &\neq n\Rightarrow0,(根据公式1)\
    m&=n\Rightarrow\frac{1}{2}[0+\int_{-L}^{L}1\mathrm{d}x]=L
    \end{align}
    ( 4 ) (4) (4)
    \begin{align}

    \int^{L}{-L}sin(\frac{n \pi x}{L})cos(\frac{m \pi x}{L})\mathrm{d}x&=\frac{1}{2}[\int{-L}^{L}sin(\frac{n \pi x}{L}+\frac{m \pi x}{L})\mathrm{d}x-\int_{-L}^{L}sin(\frac{n \pi x}{L}-\frac{m \pi x}{L})\mathrm{d}x]\
    m &\neq n\Rightarrow0,(根据公式2)\
    m&=n\Rightarrow\frac{1}{2}[0-\int_{-L}^{L}0\mathrm{d}x]=0
    \end{align}
    ( 5 ) (5) (5)
    \begin{align}
    \int^{L}{-L}sin(\frac{n \pi x}{L})sin(\frac{m \pi x}{L})\mathrm{d}x&=\frac{1}{2}[\int{-L}^{L}cos(\frac{n \pi x}{L}-\frac{m \pi x}{L})\mathrm{d}x-\int_{-L}^{L}cos(\frac{n \pi x}{L}+\frac{m \pi x}{L})\mathrm{d}x]\
    m &\neq n\Rightarrow0,(根据公式1)\
    m&=n\Rightarrow\frac{1}{2}[\int_{-L}^{L}1\mathrm{d}x-0]=L
    \end{align}
    $$

    a 0 的 计 算 a_0的计算 a0

∫ − L L f ( x ) d x = ∫ − L L A 0 d x + ∫ − L L ∑ h = 1 ∞ [ a n cos ⁡ ( n π x L ) + b n sin ⁡ ( n π x L ) ] d x = 2 L A 0 , ( 根 据 公 式 1 ) A 0 = 1 2 L ∫ − L L f ( x ) d x = 1 2 a 0 \begin{aligned} \int_{-L}^{L} f(x) d x &=\int_{-L}^{L} A_{0} d x+\int_{-L}^{L} \sum_{h=1}^{\infty}\left[a_{n} \cos \left(\frac{n\pi x}{L}\right)+b_{n} \sin \left(\frac{n\pi x}{L}\right)\right] d x \\ &=2 L A_{0},(根据公式1)\\ A_0=\frac{1}{2L}&\int_{-L}^{L}f(x)\mathrm{d}x=\frac{1}{2}a_0 \end{aligned} LLf(x)dxA0=2L1=LLA0dx+LLh=1[ancos(Lnπx)+bnsin(Lnπx)]dx=2LA0,(1)LLf(x)dx=21a0

a n 的 计 算 a_n的计算 an
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ 两边同乘cos(\fr…
​ b_n的计算​
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ 两边同乘sin(\fr…

  1. 得出结论
    $$
    \begin{align}
    定义&在-L<x<L的f(x)的Fourier级数是\
    &f(x)=A_{0}+\sum_{n=1}^{\infty}[ a_{n} \cos (\frac{n \pi x}{L})+b_{n} \sin (\frac{n \pi x}{L}) ]\
    其中&\
    &a_0=\frac{1}{L}\int_{-L}^{L}f(x)\mathrm{d}x\
    &a_n=\frac{1}{L}\int_{-L}^{L}f(x)cos(\frac{n\pi x}{L}) d x\
    &b_n=\frac{1}{L}\int_{-L}^{L}f(x)sin(\frac{n\pi x}{L}) d x

    \end{align}
    $$

极坐标

定义及其图形

极坐标
P ( r , θ ) P(r,\theta) P(r,θ)
r:从O到P的有向距离

θ \theta θ:从初始射线到射线OP的有向角

r=a 中心为O半径为r的圆周

θ \theta θ=a 过O且与初始线段成角a的一条直线

对称性

  1. 关于x轴对称 ( r , θ ) ⇒ ( r , − θ ) ( r , − θ + π ) (r,\theta) \Rightarrow (r,-\theta)(r,-\theta+\pi) (r,θ)(r,θ)(r,θ+π)
  2. 关于y轴对称 ( r , θ ) ⇒ ( − r , − θ ) ( − r , − θ + π ) (r,\theta) \Rightarrow (-r,-\theta)(-r,-\theta+\pi) (r,θ)(r,θ)(r,θ+π)
  3. 关于O对称 ( r , θ ) ⇒ ( − r , θ ) (r,\theta) \Rightarrow (-r,\theta) (r,θ)(r,θ)

笛卡尔坐标系和极坐标系的转换
x = r cos ⁡ ( θ ) , y = r sin ⁡ ( θ ) , x 2 + y 2 = r 2 , y x = tan ⁡ ( θ ) x=r\cos(\theta),\quad y=r\sin(\theta),\quad x^2+y^2=r^2,\quad \frac{y}{x}=\tan(\theta) x=rcos(θ),y=rsin(θ),x2+y2=r2,xy=tan(θ)

极坐标的微积分

d y d x = f ′ ( θ ) sin ⁡ θ + f ( θ ) cos ⁡ θ f ′ ( θ ) cos ⁡ θ + f ( θ ) sin ⁡ θ \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{f'(\theta)\sin\theta+f(\theta)\cos\theta}{f'(\theta)\cos\theta+f(\theta)\sin\theta} dxdy=f(θ)cosθ+f(θ)sinθf(θ)sinθ+f(θ)cosθ

A = ∫ α β 1 2 r 2 d θ A=\int_{\alpha}^{\beta}\frac{1}{2}r^2\mathrm{d}\theta A=αβ21r2dθ

平面向量

空间向量

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值