【Paddle学习】Paddle案例

最简单的线性回归例子:

Paddle实现最简单的线性回归的例子如下:

# 乘坐出租车的时候,会有一个10元的起步价,只要上车就需要收取。出租车每行驶1公里,需要再支付每公里2元的行驶费用。
# 当一个乘客坐完出租车之后,车上的计价器需要算出来该乘客需要支付的乘车费用。
def calculate_fee(distance_travelled):
    return 10 + 2 * distance_travelled

for x in [1.0, 3.0, 5.0, 9.0, 10.0, 20.0]:
    pass
    # print(calculate_fee(x))

# 现在知道乘客每次乘坐出租车的公里数,也知道乘客每次下车的时候支付给出租车司机的总费用。
# 但是并不知道乘车的起步价,以及每公里行驶费用是多少。
# total_fee = w * distance_travelled + b
# 在机器学习任务中,像distance_travelled这样的输入值,一般被称为x(或者特征feature),
# 像total_fee这样的输出值,一般被称为y(或者标签label)。

import paddle
print("paddle " + paddle.__version__)
# paddle.to_tensor把示例数据转换为paddle的Tensor数据
x_data = paddle.to_tensor([[1.], [3.0], [5.0], [9.0], [10.0], [20.0]])
y_data = paddle.to_tensor([[12.], [16.0], [20.0], [28.0], [30.0], [50.0]])
print("x_data : {}".format(x_data))
print("y_data: {}".format(y_data))

# 用飞桨定义模型的计算
# 从数据当中学习公式当中的w和b。这样在未来,给定x时就可以估算出来y值(估算出来的y记为y_predict)y_predict = w * x + b
# 用飞桨的线性变换层:paddle.nn.Linear来实现这个计算过程,这个公式里的变量x, y, w, b, y_predict4
# 根据经验,已经事先知道了distance_travelled和total_fee之间是线性的关系
linear = paddle.nn.Linear(in_features=1, out_features=1)

# 机器(计算机)在一开始的时候会随便猜w和b,可以看到,这时候的w是一个随机值,b是0.0,这是飞桨的初始化策略,也是这个领域常用的初始化策略。
w_before_opt = linear.weight.numpy().item()
b_before_opt = linear.bias.numpy().item()

print("w before optimize: {}".format(w_before_opt))
print("b before optimize: {}".format(b_before_opt))

# 告诉飞桨怎么样学习
# 得到的y_predict,跟实际的y值一定是有差距的。机器会根据这个差距来调整w和b,随着逐步调整,w和b会越来越正确,y_predict跟y之间的差距也会越来越小,从而最终能得到好用的w和b。这个过程就是机器学习的过程。
# 衡量差距的函数(一个公式)就是损失函数,用来调整参数的方法就是优化算法
# 用最简单的均方误差(mean square error)作为损失函数(paddle.nn.MSELoss);
# 和最常见的优化算法SGD(stocastic gradient descent)作为优化算法
# (传给paddle.optimizer.SGD的参数learning_rate,可以理解为控制每次调整的步子大小的参数)。
mse_loss = paddle.nn.MSELoss()
sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001, parameters = linear.parameters())

# 运行优化算法
# 衡量y和y_predict的差距的loss)在不断的降低
total_epoch = 5000
for i in range(total_epoch):
    y_predict = linear(x_data)
    loss = mse_loss(y_predict, y_data)
    loss.backward()
    sgd_optimizer.step()
    sgd_optimizer.clear_grad()

    if i % 1000 == 0:
        print("epoch {} loss {}".format(i, loss.numpy()))

print("finished training, loss {}".format(loss.numpy()))

# 机器学习出来的参数
# 经过了这样的对参数w和b的调整(学习),再通过下面的程序,来看看现在的参数变成了多少
w_after_opt = linear.weight.numpy().item()
b_after_opt = linear.bias.numpy().item()

print("w after optimize: {}".format(w_after_opt))
print("b after optimize: {}".format(b_after_opt))

波士顿房价预测(线性回归):

下面是使用paddle实现波士顿房价预测(使用线性回归模型)的实现例子:
其中数据集(housing.data):
在这里插入图片描述

在这里插入图片描述

# paddle/fluid:飞桨的主库,目前大部分的实用函数均在paddle.fluid包内。
import paddle.fluid as fluid
# dygraph:动态图的类库
import paddle.fluid.dygraph as dygraph
# Linear:神经网络的全连接层函数,即包含所有输入权重相加和激活函数的基本神经元结构。在房价预测任务中,使用只有一层的神经网络(全连接层)来实现线性回归模型。
from paddle.fluid.dygraph import Linear
import numpy as np


def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ')

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                     'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                               training_data.sum(axis=0) / training_data.shape[0]

    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(feature_num):
        # print(maximums[i], minimums[i], avgs[i])
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    # ratio = 0.8
    # offset = int(data.shape[0] * ratio)
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data


class Regressor(fluid.dygraph.Layer):
    # 定义init函数:在类的初始化函数中声明每一层网络的实现函数。在房价预测模型中,只需要定义一层全连接层FC。
    # name_scope变量用于调试模型时追踪多个模型的变量,在此忽略即可,飞桨1.7及之后版本不强制用户设置name_scope。
    def __init__(self, name_scope):
        super().__init__(name_scope)
        name_scope = self.full_name()
        # 定义一层全连接层,输出维度是1,激活函数为None,即不使用激活函数
        self.fc = Linear(input_dim=13, output_dim=1, act=None)      # act=None不使用任何激活函数

    # 网络的前向计算函数
    # 定义forward函数:构建神经网络结构,实现前向计算过程,并返回预测结果,在本任务中返回的是房价预测结果。
    def forward(self, inputs):
        x = self.fc(inputs)
        return x


# 定义飞桨动态图的工作环境
with fluid.dygraph.guard():
    # 声明定义好的线性回归模型
    model = Regressor("Regressor")
    # 开启模型训练模式
    model.train()
    # 加载数据
    training_data, test_data = load_data()
    # 定义优化算法,这里使用随机梯度下降-SGD
    # 学习率设置为0.01
    opt = fluid.optimizer.SGD(learning_rate=0.01, parameter_list=model.parameters())



with dygraph.guard(fluid.CUDAPlace(0)): # fluid.CPUPlace使用CPU计算
    EPOCH_NUM = 10  # 设置外层循环次数
    BATCH_SIZE = 10  # 设置batch大小

    # 定义外层循环,外层循环: 定义遍历数据集的次数,通过参数EPOCH_NUM设置。
    for epoch_id in range(EPOCH_NUM):
        # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
        np.random.shuffle(training_data)
        # 将训练数据进行拆分,每个batch包含10条数据
        mini_batches = [training_data[k:k + BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]

        # 定义内层循环,内层循环: 负责整个数据集的一次遍历,采用分批次方式(batch)。一般设置为2^n或10^n
        # 假设数据集样本数量为1000,一个批次有10个样本,则遍历一次数据集的批次数量是1000/10=100,即内层循环需要执行100次。
        # batch的取值会影响模型训练效果。batch过大,会增大内存消耗和计算时间,且效果并不会明显提升;batch过小,每个batch的样本数据将没有统计意义。由于房价预测模型的训练数据集较小,我们将batch为设置10。
        for iter_id, mini_batch in enumerate(mini_batches):
            x = np.array(mini_batch[:, :-1]).astype('float32')  # 获得当前批次训练数据
            y = np.array(mini_batch[:, -1:]).astype('float32')  # 获得当前批次训练标签(真实房价)
            # 将numpy数据转为飞桨动态图variable形式
            house_features = dygraph.to_variable(x)
            prices = dygraph.to_variable(y)

            # 前向计算
            predicts = model(house_features)

            # 计算损失
            loss = fluid.layers.square_error_cost(predicts, label=prices)
            avg_loss = fluid.layers.mean(loss)
            if iter_id % 20 == 0:
                print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))

            # 反向传播
            avg_loss.backward()
            # 最小化loss,更新参数
            opt.minimize(avg_loss)
            # 清除梯度
            model.clear_gradients()
    # 保存模型
    fluid.save_dygraph(model.state_dict(), 'LR_model')



# 定义飞桨动态图工作环境,将模型当前的参数数据model.state_dict()保存到文件中(通过参数指定保存的文件名 LR_model),以备预测或校验的程序调用
with fluid.dygraph.guard():
    # 保存模型参数,文件名为LR_model
    fluid.save_dygraph(model.state_dict(), 'LR_model')
    print("模型保存成功,模型参数保存在LR_model中")



def load_one_example(data_dir):
    f = open(data_dir, 'r')
    datas = f.readlines()
    # 选择倒数第10条数据用于测试
    tmp = datas[-15]
    tmp = tmp.strip().split()
    one_data = [float(v) for v in tmp]

    # 对数据进行归一化处理
    for i in range(len(one_data)-1):
        one_data[i] = (one_data[i] - avg_values[i]) / (max_values[i] - min_values[i])

    data = np.reshape(np.array(one_data[:-1]), [1, -1]).astype(np.float32)
    label = one_data[-1]
    return data, label


with dygraph.guard():
    # 参数为保存模型参数的文件地址
    model_dict, _ = fluid.load_dygraph('LR_model')
    model.load_dict(model_dict)
    model.eval()

    # 参数为数据集的文件地址
    test_data, label = load_one_example('./work/housing.data')
    # 将数据转为动态图的variable格式
    test_data = dygraph.to_variable(test_data)
    results = model(test_data)

    # 对结果做反归一化处理
    results = results * (max_values[-1] - min_values[-1]) + avg_values[-1]
    print("Inference result is {}, the corresponding label is {}".format(results.numpy(), label))
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,下面是添加了Attention机制的DeepCFD网络的示例代码: import paddle import paddle.nn as nn class Attention(nn.Layer): def __init__(self, input_size, hidden_size): super(Attention, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.attn = nn.Linear(self.input_size + self.hidden_size, 1) self.softmax = nn.Softmax(axis=1) def forward(self, input, hidden): max_len = input.shape[1] attn_energies = paddle.zeros([input.shape[0], max_len, 1]) for i in range(max_len): attn_energies[:, i] = self.score(input[:, i, :], hidden) attn_weights = self.softmax(attn_energies) context = paddle.sum(attn_weights * input, axis=1) return context def score(self, input, hidden): energy = self.attn(paddle.concat([input, hidden], axis=1)) return energy class DeepCFD(nn.Layer): def __init__(self, input_size, hidden_size, output_size): super(DeepCFD, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.lstm = nn.LSTM(input_size, hidden_size, num_layers=2, batch_first=True) self.attention = Attention(input_size, hidden_size) self.fc = nn.Linear(hidden_size, output_size) def forward(self, input): output, (hidden, cell) = self.lstm(input) context = self.attention(output, hidden[-1]) output = self.fc(context) return output 在这个示例代码中,我们将Attention机制应用到了LSTM的输出上。在Attention中,我们计算了每个时间步的注意力能量,然后使用softmax函数计算注意力权重。然后,我们将这些权重与LSTM输出相乘并求和,得到上下文向量作为Attention机制的输出。 在DeepCFD中,我们使用了两层LSTM,然后将LSTM输出和最后一个时刻的隐藏状态作为Attention机制的输入。最后,我们将Attention机制的输出传递到一个全连接层中,得到最终的输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值