剑指 Offer 51. 数组中的逆序对
思路:归并排序
- 终止条件:l>=r时,返回0
- 递归划分:计算数组中点m,递归划分左子数组和右子数组;
- 合并与逆序对统计:
- 暂存数组nums闭区间[l,r]至辅助数组tmp
- 循环合并:设置双指针分别指向做右子数组的首元素:
- 当i==m+1时,代表左子数组已合并完,添加右子数组,并执行j++
- 否则,当j==r+1或者tmp[i]<=tmp[j]时,代表右子数组已合并完或左子数组当前元素小于右子数组当前元素,添加左子数组并执行i++
- 否则,当tmp[i]>tmp[j]时,代表左子数组当前元素大于右子数组当前元素,添加右子数组并执行j++,此时构成逆序对m-i+1,加到res
- 合并与逆序对统计:
- 返回res
class Solution {
public:
int reversePairs(vector<int>& nums) {
vector<int> tmp(nums.size());
int res=mergeSort(0,nums.size()-1,nums,tmp);
return res;
}
int mergeSort(int l,int r,vector<int>& nums,vector<int>& tmp){
if(l>=r) return 0;
int m=l+r>>1;
int res=mergeSort(l,m,nums,tmp)+mergeSort(m+1,r,nums,tmp);
for(int i=l;i<=r;++i) tmp[i]=nums[i];
int i=l,j=m+1,k=l;
while(k<=r){
if(i==m+1)
nums[k++]=tmp[j++];
else if(j==r+1||tmp[i]<=tmp[j]){
nums[k++]=tmp[i++];
}
else{
nums[k++]=tmp[j++];
res+=m-i+1;
}
}
return res;
}
};
时间复杂度 O(nlogn)
空间复杂度 O(n)