题意:
宇宙射线会在无限的二维平面上传播(可以看做一个二维网格图),初始方向默认向上。宇宙射线会在发射出一段距离后分裂,向该方向的左右45°方向分裂出两条宇宙射线,同时威力不变!宇宙射线会分裂n 次,每次分裂后会在分裂方向前进 ai个单位长度。求有多少个位置会被打击。
输入第一行包含一个正整数n(n<=30) ,表示宇宙射线会分裂n次。
第二行包含n个正整数a1,a2…an,第 i个数ai 表示第 i次分裂的宇宙射线会在它原方向上继续走多少个单位长度。输出一个数 ans,表示有多少个位置会被打击。
输入样例:
4
4 2 2 3
输出样例:
39
例题图示:
思路:
利用一个容器set,可以保证点的唯一性。因为每次分裂有明显的对称性,所以可以每次只向一边分裂然后另一边的点不再需要计算直接对称,本解法向右分裂。设向上的方向为0,顺时针为1234567。对于一个点的有效信息是横纵坐标,到达这个点之前的方向,该点属于哪一层。
利用递归的思想深入到最后一层之后,开始返回,首先将转折点存入set然后再把对称点也存进去,再把上一个转折点到这个点途径的点都存进去。最后set中点的个数就是被打击的点的个数。
代码:
#include<iostream>
#include<set>
#define N 35
using namespace std;
struct point
{
int x;
int y;
point(int tx = 0, int ty = 0)
{
x = tx;
y = ty;
}
bool operator<(const point& p)const
{
return (this->x != p.x) ? (this->x < p.x) : (this->y < p.y);
}
};
int n = 0;
int a[N];
set<point> sec;
void fun(point p, int index = 0, int dir = 0)
{
if (index == n)//到达第n层
return;
set<point> st;
if (dir == 0)
{
fun(point(p.x, p.y + a[index]), index + 1, 1);//只向右扩展
for (auto& i : sec)//遍历存入对称点
st.insert(point(2 * p.x - i.x, i.y));
}
else if (dir == 1)
{
fun(point(p.x + a[index], p.y + a[index]), index + 1, 2);
for (auto& i : sec)
st.insert(point(i.y + p.x - p.y, p.y + i.x - p.x));
}
else if (dir == 2)
{
fun(point(p.x + a[index], p.y), index + 1, 3);
for (auto& i : sec)
st.insert(point(i.x, p.y + p.y - i.y));
}
else if (dir == 3)
{
fun(point(p.x + a[index], p.y - a[index]), index + 1, 4);
for (auto& i : sec)
st.insert(point(p.x + p.y - i.y, p.x + p.y - i.x));
}
else if (dir == 4)
{
fun(point(p.x, p.y - a[index]), index + 1, 5);
for (auto& i : sec)
st.insert(point(p.x - (i.x - p.x), i.y));
}
else if (dir == 5)
{
fun(point(p.x - a[index], p.y - a[index]), index + 1, 6);
for (auto& i : sec)
st.insert(point(i.y + p.x - p.y, p.y - (p.x - i.x)));
}
else if (dir == 6)
{
fun(point(p.x - a[index], p.y), index + 1, 7);
for (auto& i : sec)
st.insert(point(i.x, p.y - (i.y - p.y)));
}
else if (dir == 7)
{
fun(point(p.x - a[index], p.y + a[index]), index + 1, 0);
for (auto& i : sec)
st.insert(point(p.x - (i.y - p.y), p.x + p.y - i.x));
}
sec.insert(st.begin(), st.end());
switch (dir)//存入打击点
{
case 0:
for (int i = 1; i <= a[index]; i++)
sec.insert(point(p.x, p.y + i));
break;
case 1:
for (int i = 1; i <= a[index]; i++)
sec.insert(point(p.x + i, p.y + i));
break;
case 2:
for (int i = 1; i <= a[index]; i++)
sec.insert(point(p.x + i, p.y));
break;
case 3:
for (int i = 1; i <= a[index]; i++)
sec.insert(point(p.x + i, p.y - i));
break;
case 4:
for (int i = 1; i <= a[index]; i++)
sec.insert(point(p.x, p.y - i));
break;
case 7:
for (int i = 1; i <= a[index]; i++)
sec.insert(point(p.x - i, p.y + i));
break;
case 6:
for (int i = 1; i <= a[index]; i++)
sec.insert(point(p.x - i, p.y));
break;
case 5:
for (int i = 1; i <= a[index]; i++)
sec.insert(point(p.x - i, p.y - i));
break;
default:
break;
}
}
int main()
{
cin >> n;
for (int i = 0; i < n; i++)
cin >> a[i];
fun(point(0, 0));
cout << sec.size();
return 0;
}