使用PuLP库进行Q空间单壳层下采样的具体代码实现

我们将定义一个MILP问题,目标是选择一组代表性的梯度方向,以均匀地覆盖整个球面。

安装PuLP

首先,确保你已经安装了PuLP库。如果没有安装,可以通过以下命令安装:

pip install pulp

代码实现

import numpy as np
import pulp

def optimal_sampling_milp(grad_all, num_samples):
    """
    使用MILP方法从给定的梯度集合中选择子集,使得子集中的梯度尽可能均匀分布。
    
    参数:
    - grad_all: Nx3数组,每行代表一个梯度方向。
    - num_samples: 子集中的样本数量。
    
    返回:
    - selected_indices: 选中的梯度的索引。
    """
    # 创建一个问题实例
    prob = pulp.LpProblem("Q_Space_Downsampling", pulp.LpMinimize)

    # 获取总的样本数量
    num_total_samples = grad_all.shape[0]

    # 创建决策变量,表示是否选择某个样本(1为选择,0为不选择)
    x = pulp.LpVariable.dicts("x", range(num_total_samples), cat=pulp.LpBinary)

    # 添加目标函数(最大化最小距离)
    # 使用平方距离作为目标函数
    pairwise_distances = np.sqrt((np.linalg.norm(grad_all[:, None] - grad_all, axis=2) ** 2))
    pairwise_distances[np.eye(num_total_samples) == 1] = 0  # 将对角线设置为0
    pairwise_distances = np.minimum(pairwise_distances, 1)  # 限制距离在[0, 1]范围内

    objective = pulp.lpSum([x[i] * x[j] * pairwise_distances[i][j] for i in range(num_total_samples) for j in range(num_total_samples) if i != j])
    prob += objective

    # 添加约束条件,确保恰好选择num_samples个样本
    prob += pulp.lpSum(x) == num_samples

    # 添加约束条件,确保任意两个选中的样本之间的距离至少为一个最小距离
    min_distance = 0.1  # 设置一个最小距离阈值
    for i in range(num_total_samples):
        for j in range(i + 1, num_total_samples):
            if pairwise_distances[i][j] < min_distance:
                prob += x[i] + x[j] <= 1

    # 求解问题
    prob.solve()

    # 获取结果
    selected_indices = [i for i in range(num_total_samples) if x[i].varValue > 0.5]

    return selected_indices

# 示例数据
np.random.seed(0)
grad_all = np.random.randn(100, 3)  # 假设有100个梯度方向
grad_all /= np.linalg.norm(grad_all, axis=1, keepdims=True)  # 单位化

# 调用函数进行下采样
num_samples = 20  # 假设我们想要选择20个样本
selected_indices = optimal_sampling_milp(grad_all, num_samples)

print("Selected Indices:", selected_indices)
print("Selected Gradients:\n", grad_all[selected_indices, :])

代码说明

  1. 问题定义

    • 创建一个线性规划问题实例,目标是最小化梯度方向之间的距离。
  2. 决策变量

    • 为每个梯度方向创建一个二进制决策变量x[i],表示是否选择该梯度方向。
  3. 目标函数

    • 使用平方距离作为目标函数,目标是最大化所有选中梯度方向之间的最小距离。
  4. 约束条件

    • 确保恰好选择num_samples个样本。
    • 确保任意两个选中的样本之间的距离至少为一个最小距离阈值。
  5. 求解问题

    • 使用PuLP的求解器求解MILP问题。
  6. 获取结果

    • 获取选中的梯度方向的索引。

这个示例代码展示了如何使用PuLP库进行Q空间单壳层下采样。你可以根据具体需求调整目标函数和约束条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值