我们将定义一个MILP问题,目标是选择一组代表性的梯度方向,以均匀地覆盖整个球面。
安装PuLP
首先,确保你已经安装了PuLP库。如果没有安装,可以通过以下命令安装:
pip install pulp
代码实现
import numpy as np
import pulp
def optimal_sampling_milp(grad_all, num_samples):
"""
使用MILP方法从给定的梯度集合中选择子集,使得子集中的梯度尽可能均匀分布。
参数:
- grad_all: Nx3数组,每行代表一个梯度方向。
- num_samples: 子集中的样本数量。
返回:
- selected_indices: 选中的梯度的索引。
"""
# 创建一个问题实例
prob = pulp.LpProblem("Q_Space_Downsampling", pulp.LpMinimize)
# 获取总的样本数量
num_total_samples = grad_all.shape[0]
# 创建决策变量,表示是否选择某个样本(1为选择,0为不选择)
x = pulp.LpVariable.dicts("x", range(num_total_samples), cat=pulp.LpBinary)
# 添加目标函数(最大化最小距离)
# 使用平方距离作为目标函数
pairwise_distances = np.sqrt((np.linalg.norm(grad_all[:, None] - grad_all, axis=2) ** 2))
pairwise_distances[np.eye(num_total_samples) == 1] = 0 # 将对角线设置为0
pairwise_distances = np.minimum(pairwise_distances, 1) # 限制距离在[0, 1]范围内
objective = pulp.lpSum([x[i] * x[j] * pairwise_distances[i][j] for i in range(num_total_samples) for j in range(num_total_samples) if i != j])
prob += objective
# 添加约束条件,确保恰好选择num_samples个样本
prob += pulp.lpSum(x) == num_samples
# 添加约束条件,确保任意两个选中的样本之间的距离至少为一个最小距离
min_distance = 0.1 # 设置一个最小距离阈值
for i in range(num_total_samples):
for j in range(i + 1, num_total_samples):
if pairwise_distances[i][j] < min_distance:
prob += x[i] + x[j] <= 1
# 求解问题
prob.solve()
# 获取结果
selected_indices = [i for i in range(num_total_samples) if x[i].varValue > 0.5]
return selected_indices
# 示例数据
np.random.seed(0)
grad_all = np.random.randn(100, 3) # 假设有100个梯度方向
grad_all /= np.linalg.norm(grad_all, axis=1, keepdims=True) # 单位化
# 调用函数进行下采样
num_samples = 20 # 假设我们想要选择20个样本
selected_indices = optimal_sampling_milp(grad_all, num_samples)
print("Selected Indices:", selected_indices)
print("Selected Gradients:\n", grad_all[selected_indices, :])
代码说明
-
问题定义:
- 创建一个线性规划问题实例,目标是最小化梯度方向之间的距离。
-
决策变量:
- 为每个梯度方向创建一个二进制决策变量
x[i]
,表示是否选择该梯度方向。
- 为每个梯度方向创建一个二进制决策变量
-
目标函数:
- 使用平方距离作为目标函数,目标是最大化所有选中梯度方向之间的最小距离。
-
约束条件:
- 确保恰好选择
num_samples
个样本。 - 确保任意两个选中的样本之间的距离至少为一个最小距离阈值。
- 确保恰好选择
-
求解问题:
- 使用PuLP的求解器求解MILP问题。
-
获取结果:
- 获取选中的梯度方向的索引。
这个示例代码展示了如何使用PuLP库进行Q空间单壳层下采样。你可以根据具体需求调整目标函数和约束条件。