目录
一、数据结构和算法概述
1.1什么是数据结构
概念:数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及他们之间的关系和操作等相关问题的学科
理解:数据结构就是把数据元素按照一定的关系组织起来的集合,用来组织和存储数据
1.2数据结构的分类
传统上,我们把数据结构分为逻辑结构和物理结构两大类
逻辑结构分类:
逻辑结构是从具体问题中抽象出开的模型,是抽象意义上的结构,按照对象中数据元素之间的相互关系分类
- 集合结构:数据元素除了属于同一个集合外,之间没有任何其他的关系
- 线性结构:数据元素之间存在一对一的关系
- 树形结构:数据元素之间存在一对多的关系
- 图形结构:数据元素之间是多对多的关系
物理结构分类:
逻辑结构在计算机中真正的表示方式(又称为映像)称为物理结构,也可以叫做存储结构,常见的物理结构有顺序存储结构、链式存储结构
- 顺序存储结构:
- 把数据元素放到地址连续的存储单元里面,其数据间的逻辑关系和物理关系是一致的,比如 数组 就是顺序存储结构
- 链式存储结构
- 把数据元素存放在任意的存储单元里面,这组存储结构可以是连续的也可以是不连续的。此时,数据元素之间并不能反映元素间的逻辑关系,因此在链式存储结构中引进了一个指针存放数据元素的地址,这样通过地址就可以找到相关元素的位置
1.3什么是算法
概念:算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法解决问题的策略机制,能够对一定规范的输入,在有限时间内获得所要求的输出
理解:根据一定的条件,对一些数据进行计算,得到需要的结果
一个优秀的算法追求以下两个目标:
- 花最少的时间完成需求
- 占用最少的内存空间完成需求
二、算法分析
1.1算法的时间复杂度分析
函数渐进增长
- 算法函数中的常数可以忽略
- 算法函数中最高次幂的常数因子可以忽略
- 算法函数中最高次幂越小,算法效率越高
算法时间复杂度
- 大O记法
- 用常数1取代运行时间中的所有加法常数 例 3次 O(1)
- 在修改后的运行次数中,只保留最高阶 例 n+3次 O(n)
- 如果高阶项存在,且常数因子不为1,则去除与这个项相乘的常数 例 2*n^2+2次 O(n^2)
- 常见的大O阶
- 时间复杂度从低到高依次为 :
- O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3)
- 时间复杂度从低到高依次为 :
- 函数调用的时间复杂度分析
- 最坏情况
- 最坏情况是一种保证,在应用中,这是一种最基本的保障,即使在最坏的情况下,也能够正常提供服务,所以,除非特别指定,我们提到的运行时间都指的是最坏时间下的运行时间
1.2算法的空间复杂度分析
三、java中数据结构总结
工具类Collections和Arrays
binarySearch:折半查找
sort:排序,这里是一种类似于快速排序的方法,效率仍然是O(n * log n),但却是一种稳定的排序方法。
reverse:将线性表进行逆序操作
rotate:以某个元素为轴心将线性表“旋转”。
swap:交换一个线性表中两个元素的位置。
List
-
List是有序的,可包含重复元素的Collection,使用此接口能够精确的控制每个元素插入的位置。用户能够使用索引(元素在List中的位置,类似于数组下 >标)来访问List中的元素,这类似于Java的数组。
-
ArraryList 基于数组 线程不同步 适合查询
-
Vector 基于数组 线程同步
-
LinkedList 链表实现 线程不同步 适合 添加、删除
Set
- Set是无序的,不包含重复元素的Collection
- HashSet 基于HashMap来实现的
- SortedSet 有序的Set,通过SortedMap来实现
Map
- Map 是无序的 key 不可重复,value 可重复
- HashMap 元素可为空
- TreeMap
- HashTable 线程安全,元素不可为空