目录
正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。可以说是最重要的一种分布,也是应用最广泛的连续型分布。
正态分布是具有两个参数μ和σ^2的连续型随机变量的分布。
- 第一参数μ是遵从正态分布的随机变量的均值(期望),这个参数决定了分布的位置。
- 第二个参数σ^2是此随机变量的方差,这个参数决定了分布的幅度。
所以正态分布记作N(μ,σ^2 )。 遵从正态分布的随机变量的概率规律为取 μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。
当μ=0,σ^2 =1时,称为标准正态分布,记为N(0,1)。
概率密度函数
如果连续型随机变量X的概率密度函数 f(x|μ,σ^2)具有如下形式:
则称X服从均值为μ,方差为σ^2的正态分布。
概率密度曲线图
1.标准正态分