用R语言学习数据挖掘——5.随机变量及其分布(正态分布)

本文介绍了正态分布的重要性及其在统计学中的地位,详细阐述了正态分布的参数μ和σ^2的含义,并讨论了标准正态分布。通过R语言展示了如何绘制不同参数下的正态分布曲线,帮助读者理解正态分布的形状与参数的关系。
摘要由CSDN通过智能技术生成

目录

概率密度函数

概率密度曲线图

用R做正态分布


正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。可以说是最重要的一种分布,也是应用最广泛的连续型分布。

正态分布是具有两个参数μ和σ^2的连续型随机变量的分布。

  • 第一参数μ是遵从正态分布的随机变量的均值(期望),这个参数决定了分布的位置。
  • 第二个参数σ^2是此随机变量的方差,这个参数决定了分布的幅度。

所以正态分布记作N(μ,σ^2 )。 遵从正态分布的随机变量的概率规律为取 μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。 

当μ=0,σ^2 =1时,称为标准正态分布,记为N(0,1)。

概率密度函数

如果连续型随机变量X的概率密度函数 f(x|μ,σ^2)具有如下形式:


则称X服从均值为μ,方差为σ^2的正态分布。

概率密度曲线图

1.标准正态分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值