结巴分词详细讲解

jieba

转:https://github.com/fxsjy/jieba

“结巴”中文分词:做最好的 Python 中文分词组件。

特点

  1. 支持三种分词模式:

    全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
    精确模式:试图将句子最精确地切开,适合文本分析;
    搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
    
  2. 支持繁体分词

  3. 支持自定义词典

  4. MIT 授权协议

算法

  1. 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
  2. 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
  3. 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法

主要功能

- 分词

  • jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用
    HMM 模型

  • jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM
    模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细

  • 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK
    字符串,可能无法预料地错误解码成 UTF-8

  • jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for
    循环来获得分词后得到的每一个词语(unicode),或者用

  • jieba.lcut 以及 jieba.lcut_for_search 直接返回 list

  • jieba.Tokenizer(dictionary=DEFAULT_DICT)
    新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射

     import jieba
     seg_list = jieba.cut("我来到北京清华大学", cut_all=True)#
     print ("Full Mode: " + "/ ".join(seg_list))#全模式
     
     seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
     print("Default Mode: " + "/ ".join(seg_list))#精确模式
     
     seg_list = jieba.cut("他来到了网易杭研大厦")#默认是精确模式
     print(", ".join(seg_list))
     
     seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")#搜索引擎模式
     print(", ".join(seg_list))
    

	【全模式】
	Full Mode: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 
	【精确模式】
	Default Mode: 我/ 来到/ 北京/ 清华大学 
	【新词模式】
	他, 来到, 了, 网易, 杭研, 大厦
	注:
	(此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
	【搜索引擎模式】
	小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, ,, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

- 添加自定义词典

载入词典

  1. 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba
    有新词识别能力,但是自行添加新词可以保证更高的正确率
  2. 用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
  3. 词典格式和 dict.txt
    一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name
    若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。
  4. 词频省略时使用自动计算的能保证分出该词的词频。

例如:userdict.txt

创新办 3 i
云计算 5
凱特琳 nz
台中

更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。

范例:

自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt

云计算 5
李小福 2 nr
创新办 3 i
easy_install 3 eng
好用 300
韩玉赏鉴 3 nz
八一双鹿 3 nz
台中
凱特琳 nz
Edu Trust认证 2000

用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py(代码如下)

  • 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /

  • 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /

     #encoding=utf-8
     from __future__ import print_function, unicode_literals
     import sys
     sys.path.append("../")
     import jieba
     jieba.load_userdict("userdict.txt")#载入自定义词典:每一行包括词语、词频(可省略)、词性(可省略)
     import jieba.posseg as pseg
     
     jieba.add_word('石墨烯')
     jieba.add_word('凱特琳')
     jieba.del_word('自定义词')
     
     test_sent = (
     "李小福是创新办主任也是云计算方面的专家; 什么是八一双鹿\n"
     "例如我输入一个带“韩玉赏鉴”的标题,在自定义词库中也增加了此词为N类\n"
     "「台中」正確應該不會被切開。mac上可分出「石墨烯」;此時又可以分出來凱特琳了。"
     )
     words = jieba.cut(test_sent)#精确模式分词
     print('/'.join(words))
     print("="*40)#输出40个=号
     #李小福/是/创新办/主任/也/是/云计算/方面/的/专家/;/ /什么/是/八一双鹿/
     #/例如/我/输入/一个/带/“/韩玉赏鉴/”/的/标题/,/在/自定义词/库中/也/增加/了/此/词为/N/类/
     #/「/台中/」/正確/應該/不會/被/切開/。/mac/上/可/分出/「/石墨烯/」/;/此時/又/可以/分出/來/凱特琳/了/。
     #========================================
     
     result = pseg.cut(test_sent)
     for w in result:
         print(w.word, "/", w.flag, ", ", end=' ')#输出词语、词性
     print("\n" + "="*40)
     #李小福 / nr ,  是 / v ,  创新办 / i ,  主任 / b ,  也 / d ,  是 / v ,  云计算 / x ,  方面 / n ,  的 / uj ,  专家 / n ,  ; / x ,    / x ,  什么 / r ,  是 / v ,  八一双鹿 / nz ,  
     # / x ,  例如 / v ,  我 / r ,  输入 / v ,  一个 / m ,  带 / v ,  “ / x ,  韩玉赏鉴 / nz ,  ” / x ,  的 / uj ,  标题 / n ,  , / x ,  在 / p ,  自定义词 / n ,  库中 / nrt ,  也 / d ,  增加 / v ,  了 / ul ,  此 / r ,  词 / n ,  为 / p ,  N / eng ,  类 / q ,  
     # / x ,  「 / x ,  台中 / s ,  」 / x ,  正確 / ad ,  應該 / v ,  不 / d ,  會 / v ,  被 / p ,  切開 / ad ,  。 / x ,  mac / eng ,  上 / f ,  可 / v ,  分出 / v ,  「 / x ,  石墨烯 / x ,  」 / x ,  ; / x ,  此時 / c ,  又 / d ,  可以 / c ,  分出 / v ,  來 / zg ,  凱特琳 / nz ,  了 / ul ,  。 / x ,  
     #========================================
     
     terms = jieba.cut('easy_install is great')
     print('/'.join(terms))
     terms = jieba.cut('python 的正则表达式是好用的')
     print('/'.join(terms))
     print("="*40)
     #easy_install/ /is/ /great
     #python/ /的/正则表达式/是/好用/的
     #========================================
     
     # test frequency tune测试词语词频
     testlist = [
     ('今天天气不错', ('今天', '天气')),
     ('如果放到post中将出错。', ('中', '将')),
     ('我们中出了一个叛徒', ('中', '出')),
     ]
     for sent, seg in testlist:
         print('/'.join(jieba.cut(sent, HMM=False)))#精确模式,不使用HMM模型
         word = ''.join(seg)
         print('%s Before: %s, After: %s' % (word, jieba.get_FREQ(word), jieba.suggest_freq(seg, True)))#suggest_freq(seg, True)调节单个词语词频
         print('/'.join(jieba.cut(sent, HMM=False)))
         print("-"*40)
     #今天天气/不错
     #今天天气 Before: 5, After: 0
     #今天天气/不错
     #----------------------------------------
     #如果/放到/post/中/将/出错/。
     #中将 Before: 494, After: 494
     #如果/放到/post/中/将/出错/。
     #----------------------------------------
     #我们/中/出/了/一个/叛徒
     #中出 Before: 3, After: 3
     #我们/中/出/了/一个/叛徒
     #----------------------------------------
    

调整词典

  • 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。
  • 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。
  • 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。

代码示例:

>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中将/出错/。
>>> jieba.suggest_freq(('中', '将'), True)
494
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中/将/出错/。
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台/中/」/正确/应该/不会/被/切开
>>> jieba.suggest_freq('台中', True)
69
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开

- 关键词提取

  • 基于 TF-IDF 算法的关键词抽取

    import jieba.analyse

  • jieba.analyse.extract_tags(sentence, topK=20, withWeight=False,
    allowPOS=()) sentence 为待提取的文本

  • topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20

  • withWeight 为是否一并返回关键词权重值,默认值为 False

  • allowPOS 仅包括指定词性的词,默认值为空,即不筛选

  • jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件

代码示例 (关键词提取):https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py(代码如下)

import sys
sys.path.append('../')

import jieba
import jieba.analyse
from optparse import OptionParser

USAGE = "usage:    python extract_tags.py [file name] -k [top k]"

parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args()


if len(args) < 1:
    print(USAGE)
    sys.exit(1)

file_name = args[0]

if opt.topK is None:
    topK = 10
else:
    topK = int(opt.topK)

content = open(file_name, 'rb').read()

tags = jieba.analyse.extract_tags(content, topK=topK)

print(",".join(tags))

关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径

  • 用法: jieba.analyse.set_idf_path(file_name) # file_name为自定义语料库的路径

  • 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big(内容如下)

     劳动防护 13.900677652
     勞動防護 13.900677652
     生化学 13.900677652
     生化學 13.900677652
     奥萨贝尔 13.900677652
     奧薩貝爾 13.900677652
     考察队员 13.900677652
     考察隊員 13.900677652
     ......
    

用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py

import sys
sys.path.append('../')

import jieba
import jieba.analyse
from optparse import OptionParser

USAGE = "usage:    python extract_tags_idfpath.py [file name] -k [top k]"

parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args()


if len(args) < 1:
    print(USAGE)
    sys.exit(1)

file_name = args[0]

if opt.topK is None:
    topK = 10
else:
    topK = int(opt.topK)

content = open(file_name, 'rb').read()

jieba.analyse.set_idf_path("../extra_dict/idf.txt.big");#与extract_tags相比多了这一句

tags = jieba.analyse.extract_tags(content, topK=topK)

print(",".join(tags))

关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径

  • 用法: jieba.analyse.set_stop_words(file_name) # file_name为自定义语料库的路径

  • 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt(内容如下)

     the
     of
     is
     and
     to
     in
     that
     we
     for
     an
     are
     by
     be
     as
     on
     with
     can
     if
     from
     which
     you
     it
     this
     then
     at
     have
     all
     not
     one
     has
     or
     that
     的
     了
     和
     是
     就
     都
     而
     及
     與
     著
     或
     一個
     沒有
     我們
     你們
     妳們
     他們
     她們
     是否
    

用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py(代码如下)

import sys
sys.path.append('../')

import jieba
import jieba.analyse
from optparse import OptionParser

USAGE = "usage:    python extract_tags_stop_words.py [file name] -k [top k]"

parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args()


if len(args) < 1:
    print(USAGE)
    sys.exit(1)

file_name = args[0]

if opt.topK is None:
    topK = 10
else:
    topK = int(opt.topK)

content = open(file_name, 'rb').read()

jieba.analyse.set_stop_words("../extra_dict/stop_words.txt")#停用词
jieba.analyse.set_idf_path("../extra_dict/idf.txt.big");#idf词频

tags = jieba.analyse.extract_tags(content, topK=topK)

print(",".join(tags))

关键词一并返回关键词权重值示例

  • 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py(代码如下)

     import sys
     sys.path.append('../')
     
     import jieba
     import jieba.analyse
     from optparse import OptionParser
     
     USAGE = "usage:    python extract_tags_with_weight.py [file name] -k [top k] -w [with weight=1 or 0]"
     
     parser = OptionParser(USAGE)
     parser.add_option("-k", dest="topK")
     parser.add_option("-w", dest="withWeight")
     opt, args = parser.parse_args()
     
     
     if len(args) < 1:
         print(USAGE)
         sys.exit(1)
     
     file_name = args[0]
     
     if opt.topK is None:
         topK = 10
     else:
         topK = int(opt.topK)
     
     if opt.withWeight is None:
         withWeight = False
     else:
         if int(opt.withWeight) is 1:
             withWeight = True
         else:
             withWeight = False
     
     content = open(file_name, 'rb').read()
     
     tags = jieba.analyse.extract_tags(content, topK=topK, withWeight=withWeight)
     
     if withWeight is True:
         for tag in tags:
             print("tag: %s\t\t weight: %f" % (tag[0],tag[1]))
     else:
         print(",".join(tags))
    

4. 词性标注

jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。
标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。

  • 用法示例

     >>> import jieba.posseg as pseg
     >>> words = pseg.cut("我爱北京天安门")
     >>> for word, flag in words:
     ...    print('%s %s' % (word, flag))
     ...
     我 r
     爱 v
     北京 ns
     天安门 ns
    

5. 并行分词

  • 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升

  • 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows

  • 用法:

    1. jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
    2. jieba.disable_parallel() # 关闭并行分词模式
  • 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py(代码如下)

     import sys
     import time
     sys.path.append("../../")
     import jieba
     
     jieba.enable_parallel()
     
     url = sys.argv[1]
     content = open(url,"rb").read()
     t1 = time.time()
     words = "/ ".join(jieba.cut(content))
     
     t2 = time.time()
     tm_cost = t2-t1
     
     log_f = open("1.log","wb")
     log_f.write(words.encode('utf-8'))
     
     print('speed %s bytes/second' % (len(content)/tm_cost))
    
  • 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。

  • 注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。

-Tokenize:返回词语在原文的起止位置

注意,输入参数只接受 unicode

  • 精确模式

     result = jieba.tokenize(u'永和服装饰品有限公司')
     for tk in result:
         print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
     word 永和                start: 0                end:2
     word 服装                start: 2                end:4
     word 饰品                start: 4                end:6
     word 有限公司            start: 6                end:10
     搜索模式
     result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
     for tk in result:
         print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
    

	word 永和                start: 0                end:2
	word 服装                start: 2                end:4
	word 饰品                start: 4                end:6
	word 有限                start: 6                end:8
	word 公司                start: 8                end:10
	word 有限公司            start: 6                end:10

- ChineseAnalyzer for Whoosh 搜索引擎

- 命令行分词

使用示例:python -m jieba news.txt > cut_result.txt

- -其他词典

下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary(‘data/dict.txt.big’)

结巴分词早期版本。 * 结巴分词(java版) jieba-analysis 首先感谢jieba分词原作者[[https://github.com/fxsjy][fxsjy]],没有他的无私贡献,我们也不会结识到结巴 分词,更不会有现在的java版本。 结巴分词的原始版本为python编写,目前该项目在github上的关注量为170, 打星727次(最新的数据以原仓库为准),Fork238次,可以说已经有一定的用户群。 结巴分词(java版)只保留的原项目针对搜索引擎分词的功能(cut_for_index、cut_for_search),词性标注,关键词提取没有实现(今后如用到,可以考虑实现)。 * 简介 ** 支持分词模式 - Search模式,用于对用户查询词分词 - Index模式,用于对索引文档分词 ** 特性 - 支持多种分词模式 - 全角统一转成半角 - 用户词典功能 - conf 目录有整理的搜狗细胞词库 - 支持词性标注(感谢 [[https://github.com/linkerlin][@linkerlin]] 的贡献) * 如何获取 - 当前稳定版本 #+BEGIN_SRC xml com.huaban jieba-analysis 0.0.2 #+END_SRC - 当前快照版本 - 支持词性标注 [[https://github.com/huaban/jieba-analysis/pull/4][#4]] - 修复以'-'连接词分词错误问题 [[https://github.com/huaban/jieba-analysis/issues/3][#3]] #+BEGIN_SRC xml com.huaban jieba-analysis 1.0.0-SNAPSHOT #+END_SRC * 如何使用 - Demo #+BEGIN_SRC java @Test public void testDemo() { JiebaSegmenter segmenter = new JiebaSegmenter(); String[] sentences = new String[] {"这是一个伸手不见五指的黑夜。我叫孙悟空,我爱北京,我爱Python和C++。", "我不喜欢日本和服。", "雷猴回归人间。", "工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作", "结果婚的和尚未结过婚的"}; for (String sentence : sentences) { System.out.println(segmenter.process(sentence, SegMode.INDEX).toString()); } } #+END_SRC * 算法(wiki补充...) - [ ] 基于 =trie= 树结构实现高效词图扫描 - [ ] 生成所有切词可能的有向无环图 =DAG= - [ ] 采用动态规划算法计算最佳切词组合 - [ ] 基于 =HMM= 模型,采用 =Viterbi= (维特比)算法实现未登录词识别 * 性能评估 - 测试机配置 #+BEGIN_SRC screen Processor 2 Intel(R) Pentium(R) CPU G620 @ 2.60GHz Memory:8GB 分词测试时机器开了许多应用(eclipse、emacs、chrome...),可能 会影响到测试速度 #+END_SRC - [[src/test/resources/test.txt][测试文本]] - 测试结果(单线程,对测试文本逐行分词,并循环调用上万次) #+BEGIN_SRC screen 循环调用一万次 第一次测试结果: time elapsed:12373, rate:2486.986533kb/s, words:917319.94/s 第二次测试结果: time elapsed:12284, rate:2505.005241kb/s, words:923966.10/s 第三次测试结果: time elapsed:12336, rate:2494.445880kb/s, words:920071.30/s 循环调用2万次 第一次测试结果: time elapsed:22237, rate:2767.593144kb/s, words:1020821.12/s 第二次测试结果: time elapsed:22435, rate:2743.167762kb/s, words:1011811.87/s 第三次测试结果: time elapsed:22102, rate:2784.497726kb/s, words:1027056.34/s 统计结果:词典加载时间1.8s左右,分词效率每秒2Mb多,近100万词。 2 Processor Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz 12G 测试效果 time elapsed:19597, rate:3140.428063kb/s, words:1158340.52/s time elapsed:20122, rate:3058.491639kb/s, words:1128118.44/s #+END_SRC
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值