搜索算法之宽度优先搜索(bfs)

本文介绍了使用宽度优先搜索(BFS)解决迷宫问题,包括基本的迷宫寻路和带有钥匙、门的复杂迷宫问题。通过状态压缩和坐标表示,展示了如何找到迷宫中的最短路径。并提供了示例输入和输出,讨论了算法的易错点和实际应用中的考虑因素。
摘要由CSDN通过智能技术生成

最小路径/操作问题:
1.迷宫问题
①普通迷宫(墙,路,出入口)初级
②特殊迷宫(墙,路,钥匙,门,炸弹,怪兽…)高级
本质:从某个状态出发探索所有可以到达的情况, 总是优先搜索距离初始状态近的状态。首先将初始状态添加到队列里,然后从队列的最前端不断取出状态,把从该状态可以转移到的状态中尚未访问过的部分加入队列,直到队列被取空或找到了问题的解。
典例①:迷宫的最短路径
  给定一个大小为N×M的迷宫。迷宫由通道和墙壁组成,每一步可以向邻接的上下左右四个的通道移动。请求出从起点到 终点所需的最小步数。请注意,本题假定从起点一定可以移动到终点。(N,M≤100)(’#’, ‘.’ , ‘S’, 'G’分别表示墙壁、通道、 起点和终点)
  输入:

10 10

#S######.#
…#…#
.#.##.##.#
.#…
##.##.####
…#…#
.#######.#
…#…
.####.###.
…#…G#

输出:

22
思路:本题中状态仅仅是当前位置的坐标,因此可以构造成pair类(当然,也可以把步数放到类中)来表达。当状态更加复杂
,则需要封装成更复杂的类或编码成int来表达状态。(状态压缩)

解法:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
char maze[20][20];//画个迷宫图 
int n,m;//输入的N,M范围 
int sx,sy;//起点坐标 
int ex,ey;//终点坐标 
bool vis[20][20];//逻辑判断该点是否访问过 
struct node{
	int x,y,step;
};//构造x,y坐标和步长的类 
int dx[]={1,0,-1,0};
int dy[]={0,1,0,-1};//向四个方向 
void bfs()
{
	node p;
	p.x=sx;p.y=sy;p.step=0;
	vis[sx][sy]=1;//创建起点状态 
	queue<node>q;//创建队列 
	q.push(p);//将起点添加到队列中 
	while (!q.empty())//队列尚未取空 
	{
		node tem=q.front();//从队列中取点 
		q.pop();//把点删去 
		if (tem.x==ex&&tem.y==ey)
		{
			cout<<tem.step<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值