最小路径/操作问题:
1.迷宫问题
①普通迷宫(墙,路,出入口)初级
②特殊迷宫(墙,路,钥匙,门,炸弹,怪兽…)高级
本质:从某个状态出发探索所有可以到达的情况, 总是优先搜索距离初始状态近的状态。首先将初始状态添加到队列里,然后从队列的最前端不断取出状态,把从该状态可以转移到的状态中尚未访问过的部分加入队列,直到队列被取空或找到了问题的解。
典例①:迷宫的最短路径
给定一个大小为N×M的迷宫。迷宫由通道和墙壁组成,每一步可以向邻接的上下左右四个的通道移动。请求出从起点到 终点所需的最小步数。请注意,本题假定从起点一定可以移动到终点。(N,M≤100)(’#’, ‘.’ , ‘S’, 'G’分别表示墙壁、通道、 起点和终点)
输入:
10 10
#S######.#
…#…#
.#.##.##.#
.#…
##.##.####
…#…#
.#######.#
…#…
.####.###.
…#…G#
输出:
22
思路:本题中状态仅仅是当前位置的坐标,因此可以构造成pair类(当然,也可以把步数放到类中)来表达。当状态更加复杂
,则需要封装成更复杂的类或编码成int来表达状态。(状态压缩)
解法:
①
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
char maze[20][20];//画个迷宫图
int n,m;//输入的N,M范围
int sx,sy;//起点坐标
int ex,ey;//终点坐标
bool vis[20][20];//逻辑判断该点是否访问过
struct node{
int x,y,step;
};//构造x,y坐标和步长的类
int dx[]={1,0,-1,0};
int dy[]={0,1,0,-1};//向四个方向
void bfs()
{
node p;
p.x=sx;p.y=sy;p.step=0;
vis[sx][sy]=1;//创建起点状态
queue<node>q;//创建队列
q.push(p);//将起点添加到队列中
while (!q.empty())//队列尚未取空
{
node tem=q.front();//从队列中取点
q.pop();//把点删去
if (tem.x==ex&&tem.y==ey)
{
cout<<tem.step<