01背包与完全背包问题

问题描述

给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。

0-1背包问题

若每个物品只能选用0个或1个,则称为0-1背包问题

假设有n件物品和一个容量为W的背包,每种物品都有自己的价值v[i]和重量w[i],要求在不超过背包容量的前提下,尽可能让装入背包物品的总价值最大。

解决01背包问题的动态规划算法步骤如下:

  1. 定义状态:设dp[i][j]表示前i件物品放入容量为j的背包可以获得的最大价值。

  2. 状态转移方程:

    • 当j<w[i]时,即第i件物品无法完全放入背包,那么dp[i][j] = dp[i-1][j],即不选择第i件物品。
    • 当j>=w[i]时,可以选择或不选择第i件物品。此时有两种情况:
      • 不选择第i件物品,dp[i][j] = dp[i-1][j];
      • 选择第i件物品,由于物品不能分割,所以背包剩余容量为j-w[i],因此可获得的价值为dp[i-1][j-w[i]] + v[i]。我们需要取这两种情况中的较大者作为最优解,即dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])。
  3. 初始化状态:dp[0][j] = 0,表示没有物品时,背包价值为0;dp[i][0] = 0,表示背包容量为0时,无论任何物品都无法放入,价值也为0。

  4. 最终答案就是dp[n][W],表示所有物品中能放入容量为W的背包内获得的最大价值。

以下是该问题的Python代码实现示例:

def knapsack(W, weights, values, n):
    # 创建一个(n+1) * (W+1)的二维数组,用于存储子问题的解
    dp = [[0 for w in range(W+1)] for i in range(n+1)]
    
    # 动态规划求解
    for i in range(1, n+1):
        for w in range(1, W+1):
            if weights[i-1] <= w:
                dp[i][w] = max(dp[i-1][w], dp[i-1][w-weights[i-1]] + values[i-1])
            else:
                dp[i][w] = dp[i-1][w]
    
    return dp[n][W]

# 测试
weights = [1, 3, 4, 5]
values = [1, 4, 5, 7]
W = 7
n = len(values)
print(knapsack(W, weights, values, n))  # 输出最大价值

这段代码中,weights和values分别表示物品的重量和价值列表,n是物品数量,W是背包容量。

完全背包问题

完全背包问题与01背包问题类似,但每种物品有无限件,可以无限制地取用。解决完全背包问题同样可以采用动态规划的方法。

以下是解决完全背包问题的动态规划算法步骤:

  1. 定义状态:dp[i][j]表示前i种物品放入容量为j的背包可以获得的最大价值。

  2. 状态转移方程:

    • 对于每一种物品,我们都可以选择从0件取到任意多件(只要不超过背包容量),因此我们需要遍历每一种可能的取法(即当前物品取0件、1件、2件…直至当前剩余容量允许的最大件数)。
    • 于是状态转移方程变为:dp[i][j] = max(dp[i][j], dp[i][j-w[i]] + v[i]),其中w[i]和v[i]分别为第i种物品的重量和价值,表示在满足背包容量的情况下,可以选择将第i种物品取若干件以增加总价值。
  3. 初始化状态:dp[0][j] = 0,表示没有物品时,背包价值为0;dp[i][0] = 0,表示背包容量为0时,无论任何物品都无法放入,价值也为0。

  4. 最终答案就是dp[n][W],表示所有物品中能放入容量为W的背包内获得的最大价值。

以下是该问题的Python代码实现示例:

def complete_knapsack(W, weights, values, n):
    # 创建一个(n+1) * (W+1)的二维数组,用于存储子问题的解
    dp = [[0 for w in range(W+1)] for i in range(n+1)]
    
    # 动态规划求解
    for i in range(1, n+1):
        for w in range(1, W+1):
            while w >= weights[i-1]:  # 可以无限制取当前物品
                w -= weights[i-1]
                dp[i][w] = max(dp[i][w], dp[i-1][w] + values[i-1])
            if w < weights[i-1]:  # 如果无法再取一件当前物品,则保持之前的状态不变
                break
    
    return dp[n][W]

# 测试
weights = [1, 3, 4, 5]
values = [1, 4, 5, 7]
W = 7
n = len(values)
print(complete_knapsack(W, weights, values, n))  # 输出最大价值

这段代码中,weights和values分别表示物品的重量和价值列表,n是物品种类数量,W是背包容量。注意在完全背包问题中,对于每种物品,我们在循环里使用了一个内部循环来处理“无限件”的情况。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值