数据分析 | 信息增益与基尼系数的通俗解释(含实例)

一、 信息增益

关于信息增益,写得非常好非常通俗易懂的文章:
【结合实例】信息增益的计算_怎么计算信息增益-CSDN博客

1. 定义

信息增益是基于信息论的概念,用于度量在给定特征的情况下,数据集的不确定性减少程度。在决策树中,选择能够使得信息增益最大的特征作为划分节点。

2. 计算方法

  • 计算数据集的初始信息熵(Entropy):衡量数据的不确定性程度。
  • 根据每个特征的取值对数据集进行划分,计算每个划分的条件熵(Conditional Entropy)。
  • 计算每个特征的信息增益,即初始信息熵与条件熵之差。 选择信息增益最大的特征作为划分节点。

信息熵计算公式:
H ( Y ) = − ∑ i = 1 m p i log ⁡ 2 ( p i ) H(Y)=-\sum_{i=1}^{m} p_{i}\log_{2}({p_{i}} ) H(Y)=i=1mpilog2(pi)
条件熵计算公式:
X给定条件下,Y的条件概率分布的熵对X的数学期望
p ( X = x i , Y = y j ) = p i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , m p(X=x_{i},Y=y_{j}) = p_{ij}, i=1,2,...,n;j=1,2,...,m p(X=xi,Y=yj)=pij,i=1,2,...,n;j=1,2,...,m
H ( Y ∣ X ) = ∑ x ⊂ X p ( x ) H ( Y ∣ X = x ) H(Y|X)=\sum_{x\subset X}^{} p(x)H(Y|X=x) H(YX)=xXp(x)H(YX=x)
H ( Y ∣ X ) = − ∑ x ⊂ X ∑ y ⊂ Y p ( x , y ) log ⁡ p ( y ∣ x ) H(Y|X)=-\sum_{x\subset X}^{} \sum_{y \subset Y}^{} p(x,y)\log p(y|x) H(YX)=xXyYp(x,y)logp(yx)
信息增益
I G a i n = H ( Y ) − H ( Y ∣ X ) IGain=H(Y)-H(Y|X) IGain=H(Y)H(YX)

二、 基尼系数

1. 定义

基尼系数是一种衡量数据集纯度(impurity)的指标,它表示从数据集中随机抽取两个样本,其类别标签不一致的概率。在决策树中,选择基尼系数最小的特征作为划分节点。

2. 计算方法

  • 计算数据集的基尼系数:即数据集中每个类别的概率乘以它们的概率之和的补数。
  • 根据每个特征的取值对数据集进行划分,计算每个划分的加权基尼系数。
  • 选择基尼系数最小的特征作为划分节点。

三、 区别

  • 信息增益更侧重于纯度的提升,即在划分后数据的不确定性程度的降低。
  • 基尼系数更侧重于衡量数据集的不纯度,即数据中类别标签的混合程度

三、 应用实例

饭店老板想根据顾客的两个特征来预测顾客是否会点一份甜点。这两个特征分别是:是否有小孩(是/否)和是否点了主菜(是/否)。
现在有一组数据,包含了顾客是否点了甜点以及这两个特征的信息,如下所示:

有小孩点主菜点甜点

1. 计算信息增益

需要计算特征“有小孩”和特征“点主菜”的信息增益,然后选择信息增益最大的特征作为划分节点。
首先,计算整个数据集的信息熵(Entropy):
H ( D ) = − ∑ i = 1 n p i log ⁡ 2 ( p i ) H(D) = -\sum_{i=1}^{n} p_i \log_2(p_i) H(D)=i=1npilog2(pi)
在这个例子中,类别有两个:点甜点为是和点甜点为否。因此, p 1 p_1 p1表示点甜点为是的概率, p 2 p_2 p2表示点甜点为否的概率。
p 1 = 2 5 = 0.4 p_1 = \frac{2}{5} = 0.4 p1=52=0.4 p 2 = 3 5 = 0.6 p_2 = \frac{3}{5} = 0.6 p2=53=0.6
H ( D ) = − ( 0.4 × log ⁡ 2 ( 0.4 ) + 0.6 × log ⁡ 2 ( 0.6 ) ) H(D) = -(0.4 \times \log_2(0.4) + 0.6 \times \log_2(0.6)) H(D)=(0.4×log2(0.4)+0.6×log2(0.6))

接下来,我们要计算按照特征“有小孩”划分后的条件熵和信息增益。假设特征“有小孩”有两个取值:是和否。
H 有小孩 = 是 ( D ) = − ( 2 3 × log ⁡ 2 ( 2 3 ) + 1 3 × log ⁡ 2 ( 1 3 ) ) H_{有小孩=是}(D) = -(\frac{2}{3} \times \log_2(\frac{2}{3}) + \frac{1}{3} \times \log_2(\frac{1}{3})) H有小孩=(D)=(32×log2(32)+31×log2(31))
H 有小孩 = 否 ( D ) = − ( 1 2 × log ⁡ 2 ( 1 2 ) + 1 2 × log ⁡ 2 ( 1 2 ) ) H_{有小孩=否}(D) = -(\frac{1}{2} \times \log_2(\frac{1}{2}) + \frac{1}{2} \times \log_2(\frac{1}{2})) H有小孩=(D)=(21×log2(21)+21×log2(21))
然后,计算信息增益:
G a i n ( 有小孩 ) = H ( D ) − ( 3 5 × H 有小孩 = 是 ( D ) + 2 5 × H 有小孩 = 否 ( D ) ) Gain(有小孩) = H(D) - (\frac{3}{5} \times H_{有小孩=是}(D) + \frac{2}{5} \times H_{有小孩=否}(D)) Gain(有小孩)=H(D)(53×H有小孩=(D)+52×H有小孩=(D))
同样的步骤,可以计算特征“点主菜”的信息增益。最后,选择信息增益最大的特征作为划分节点。

2. 计算基尼系数

计算每个特征的基尼系数,并选择最佳的特征来划分节点。

首先,计算整个数据集的基尼系数。数据集中有两个类别(点甜点为是和否),因此基尼系数的计算公式为:

G i n i ( D ) = 1 − ( p 1 2 + p 2 2 ) Gini(D) = 1 - (p_1^2 + p_2^2) Gini(D)=1(p12+p22)

其中, p 1 p_1 p1 p 2 p_2 p2分别表示两个类别的概率。在这个例子中,点甜点为是的概率 p 1 = 2 5 p_1 = \frac{2}{5} p1=52,点甜点为否的概率 p 2 = 3 5 p_2 = \frac{3}{5} p2=53

G i n i ( D ) = 0.48 Gini(D) = 0.48 Gini(D)=0.48

接下来计算“有小孩”划分后的基尼系数。当“有小孩”为是时,数据集中包含了三个样本,其中有两个点甜点,一个不点甜点;当“有小孩”为否时,数据集中包含了两个样本,其中一个点甜点,一个不点甜点。

G i n i ( 有小孩 = 是 ) = 1 − ( 2 3 ) 2 − ( 1 3 ) 2 = 0.44 Gini(有小孩=是) = 1 - (\frac{2}{3})^2 - (\frac{1}{3})^2 = 0.44 Gini(有小孩=)=1(32)2(31)2=0.44
G i n i ( 有小孩 = 否 ) = 1 − ( 1 2 ) 2 − ( 1 2 ) 2 = 0.50 Gini(有小孩=否) = 1 - (\frac{1}{2})^2 - (\frac{1}{2})^2 = 0.50 Gini(有小孩=)=1(21)2(21)2=0.50

最后计算按照特征“点主菜”划分后的基尼系数.
G i n i ( 点主菜 = 是 ) = 1 − ( 2 3 ) 2 − ( 1 3 ) 2 = 0.44 Gini(点主菜=是) = 1 - (\frac{2}{3})^2 - (\frac{1}{3})^2 = 0.44 Gini(点主菜=)=1(32)2(31)2=0.44
G i n i ( 点主菜 = 否 ) = 1 − ( 1 2 ) 2 − ( 1 2 ) 2 = 0.50 Gini(点主菜=否) = 1 - (\frac{1}{2})^2 - (\frac{1}{2})^2 = 0.50 Gini(点主菜=)=1(21)2(21)2=0.50

根据基尼系数的计算结果,可以选择基尼系数最小的特征来作为划分节点,即“有小孩”。这样,我们就确定了第一个划分节点,然后可以继续在子节点上进行相同的操作,直到构建完整的决策树模型。

  • 32
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: 好的,关于Python计算信息增益的问题,我可以回答。 计算信息增益可以使用Python中的机器学习库scikit-learn来实现。具体步骤如下: 1. 导入需要的库: ```python from sklearn.feature_extraction import DictVectorizer from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import numpy as np import pandas as pd ``` 2. 准备数据集,将样本的特征和类别分别存储在两个数组中: ```python features = [{'weather': 'sunny', 'temperature': 'hot', 'humidity': 'high', 'windy': False}, {'weather': 'sunny', 'temperature': 'hot', 'humidity': 'high', 'windy': True}, {'weather': 'overcast', 'temperature': 'hot', 'humidity': 'high', 'windy': False}, {'weather': 'rainy', 'temperature': 'mild', 'humidity': 'high', 'windy': False}, {'weather': 'rainy', 'temperature': 'cool', 'humidity': 'normal', 'windy': False}, {'weather': 'rainy', 'temperature': 'cool', 'humidity': 'normal', 'windy': True}, {'weather': 'overcast', 'temperature': 'cool', 'humidity': 'normal', 'windy': True}, {'weather': 'sunny', 'temperature': 'mild', 'humidity': 'high', 'windy': False}, {'weather': 'sunny', 'temperature': 'cool', 'humidity': 'normal', 'windy': False}, {'weather': 'rainy', 'temperature': 'mild', 'humidity': 'normal', 'windy': False}, {'weather': 'sunny', 'temperature': 'mild', 'humidity': 'normal', 'windy': True}, {'weather': 'overcast', 'temperature': 'mild', 'humidity': 'high', 'windy': True}, {'weather': 'overcast', 'temperature': 'hot', 'humidity': 'normal', 'windy': False}, {'weather': 'rainy', 'temperature': 'mild', 'humidity': 'high', 'windy': True}] labels = ['no', 'no', 'yes', 'yes', 'yes', 'no', 'yes', 'no', 'yes', 'yes', 'yes', 'yes', 'yes', 'no'] ``` 3. 将特征数组转换为机器学习算法可以处理的格式: ```python vec = DictVectorizer() X = vec.fit_transform(features).toarray() ``` 4. 将类别数组转换为0和1的形式: ```python y = np.array([1 if label == 'yes' else 0 for label in labels]) ``` 5. 将数据集划分为训练集和测试集: ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) ``` 6. 训练决策树模型并进行预测: ```python clf = DecisionTreeClassifier(criterion='entropy') clf.fit(X_train, y_train) y_pred = clf.predict(X_test) ``` 7. 计算模型的准确率: ```python ### 回答2: 信息增益是在决策树算法中用于评估特征重要性的指标之一,可以通过Python进行计算。 首先,需要计算整个数据集的熵值(entropy),熵值用于衡量数据集的纯度。可以使用以下代码计算数据集的熵值: ```python import math def calculate_entropy(data): num_instances = len(data) label_counts = {} for instance in data: label = instance[-1] if label not in label_counts: label_counts[label] = 0 label_counts[label] += 1 entropy = 0 for label in label_counts: probability = float(label_counts[label]) / num_instances entropy -= probability * math.log2(probability) return entropy ``` 接下来,需要计算每个特征的信息增益。可以使用以下代码计算特征的信息增益: ```python def calculate_information_gain(data, feature_index): total_entropy = calculate_entropy(data) num_instances = len(data) feature_values = {} for instance in data: feature_value = instance[feature_index] if feature_value not in feature_values: feature_values[feature_value] = [] feature_values[feature_value].append(instance) feature_entropy = 0 for feature_value in feature_values: sub_data = feature_values[feature_value] sub_entropy = calculate_entropy(sub_data) probability = float(len(sub_data)) / num_instances feature_entropy += probability * sub_entropy information_gain = total_entropy - feature_entropy return information_gain ``` 以上代码中,`data`表示数据集,`feature_index`表示特征的索引。 通过调用`calculate_information_gain`函数,可以得到每个特征的信息增益值。选择具有最高信息增益的特征作为决策树节点的划分特征。 以上是使用Python计算信息增益的简单示例,仅供参考。在实际应用中,可能需要进行更多的数据预处理和决策树算法的实现。 ### 回答3: 在Python中,我们可以使用如下的方式来计算信息增益: 1. 计算数据集的初始信息熵(Entropy): - 统计数据集中每个类别的数量。假设数据集中一共有N个样本,其中M个属于类别A,N-M个属于类别B。 - 计算每个类别的概率,即P(A) = M/N,P(B) = (N-M)/N。 - 计算初始熵:Entropy = -P(A) * log2(P(A)) - P(B) * log2(P(B))。 2. 对数据集的每个特征,计算其信息增益: - 对于每个特征,统计其不同取值对应的样本数量和类别数量。 - 根据每个特征取值下类别的概率来计算条件熵: - 计算特征取某个值时,属于类别A的样本数量,假设为M1。 - 计算特征取某个值时,属于类别B的样本数量,假设为M2。 - 计算特征取某个值时的概率,即P(特征=某个值) = (M1 + M2) / N。 - 计算条件熵:Conditional_Entropy = - P(特征=某个值) * P(A|特征=某个值) * log2(P(A|特征=某个值)) - P(特征=某个值) * P(B|特征=某个值) * log2(P(B|特征=某个值))。 - 计算特征的信息增益: - 特征的信息增益 = 初始熵 - 条件熵。 3. 找到具有最大信息增益的特征作为划分数据集的最佳特征。 以上是计算信息增益的基本步骤,在Python中我们可以通过统计计算和数学运算来实现这些步骤。可以使用numpy和pandas等库来进行数据处理,以及使用math库进行数学运算。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月婵婵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值