目标导航
文章平均质量分 86
关于Habitat 中的导航任务相关论文阅读笔记
初篱
这个作者很懒,什么都没留下…
展开
-
VLN中的训练方法及数据增强
本文提出了一种可泛化的导航智能体。智能体的训练分两个阶段进行。第一阶段是通过,结合离线策略和在线策略优化的好处。第二阶段是通过引入新的“unseen”三元组(环境、路径、指令)进行。为了生成这些“unseen triplets”,我们提出了一种简单而有效的“environmental dropout”方法来模拟看不见的环境,这克服了有限的可见环境中可变性的问题。接下来,我们将半监督学习(通过反向翻译)应用于这些被丢弃的环境,以生成新的路径和指令。原创 2023-12-29 10:12:18 · 480 阅读 · 0 评论 -
2020CVPR《DD-PPO: LEARNING NEAR-PERFECT POINTGOALNAVIGATORS FROM 2.5 BILLION FRAMES》阅读笔记
我们提出了分布式去中心近端策略优化(DD-PPO,Decentralized Distributed Proximal Policy Optimization),这是一种在资源密集型模拟环境中进行分布式强化学习的方法。DD-PPO是分布式的(使用多台机器)、去中心化的(没有中央服务器)和同步的(没有任何计算是“过时的”),这使得它在概念上简单且易于实现。在Habitat-Sim中训练虚拟机器人进行的实验中,DD-PPO表现出近线性的扩展性。原创 2023-12-24 18:08:52 · 1312 阅读 · 0 评论 -
2022ICLR《LEARNING TO MAP FORACTIVE SEMANTIC GOAL NAVIGATION》阅读笔记
研究了未知环境下的目标导航问题。解决这个问题需要学习上下文语义先验,这是一个具有挑战性的努力,因为室内环境的空间和语义可变性。当前的方法学习通过面向目标的导航策略函数来隐式地编码这些先验,这些策略函数在空间表示上操作,这些空间表示仅限于代理的可观察区域。在这项工作中,我们提出了一个新的框架,该框架主动学习在智能体的视野之外生成语义地图,并利用未观察到的区域中语义类的不确定性来决定长期目标。我们证明,通过这种空间预测策略,我们能够在场景中学习语义先验,这些场景可以在未知环境中利用。此外,我们还展示了在搜索语义原创 2023-12-23 17:19:17 · 840 阅读 · 0 评论