位1的个数

终于还是踏上了算法这条不归路,记录一下做题的历程。


位1的个数

编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量)。

例如:

输入:00000000000000000000000000001011 输出:3 解释:输入的二进制串
00000000000000000000000000001011 中,共有三位为 ‘1’。

本质还是计数。

循环检查二进制位

这个还是挺好理解的

我们可以直接循环检查给定整数 n 的二进制位的每一位是否为 1。

具体代码中,当检查第 i 位时,我们可以让 n 与 2^i 进行与运算,当且仅当 n 的第 i 位为 1 时,运算结果不为 0。

class Solution {
public:
    int hammingWeight(uint32_t n) {
        int ret = 0;
        for (int i = 0; i < 32; i++) {
            if (n & (1 << i)) {		//check每一位,若为1,则ret+1
                ret++;
            }
        }
        return ret;
    }
};

位运算优化

思路及解法

观察这个运算:n & (n−1),其预算结果恰为把 n 的二进制位中的最低位的 1 变为 0 之后的结果。 如:6 &
(6−1)=4,6=(110)2,4=(100)2​,运算结果 4 即为把 6 的二进制位中的最低位的 1 变为 0
之后的结果。

这样我们可以利用这个位运算的性质加速我们的检查过程,在实际代码中,我们不断让当前的 n 与 n−1 做与运算,直到
n 变为 0 即可。因为每次运算会使得 n 的最低位的 1 被翻转,因此运算次数就等于 n 的二进制位中 1
的个数。

代码

class Solution {
public:
    int hammingWeight(uint32_t n) {
        int ret = 0;
        while (n) {
            n &= n - 1;		//每次将最低位的1变为0,直到全为0。
            ret++;
        }
        return ret;
    }
};

复杂度分析

时间复杂度:O(log ⁡n)。循环次数等于 n 的二进制位中 1 的个数,最坏情况下 n 的二进制位全部为1。我们需要循环 log⁡ n次。
空间复杂度:O(1),我们只需要常数的空间保存若干变量。

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/number-of-1-bits/solution/wei-1de-ge-shu-by-leetcode-solution-jnwf/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值