终于还是踏上了算法这条不归路,记录一下做题的历程。
位1的个数
编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量)。
例如:
输入:00000000000000000000000000001011 输出:3 解释:输入的二进制串
00000000000000000000000000001011 中,共有三位为 ‘1’。
本质还是计数。
循环检查二进制位
这个还是挺好理解的
我们可以直接循环检查给定整数 n 的二进制位的每一位是否为 1。
具体代码中,当检查第 i 位时,我们可以让 n 与 2^i 进行与运算,当且仅当 n 的第 i 位为 1 时,运算结果不为 0。
class Solution {
public:
int hammingWeight(uint32_t n) {
int ret = 0;
for (int i = 0; i < 32; i++) {
if (n & (1 << i)) { //check每一位,若为1,则ret+1
ret++;
}
}
return ret;
}
};
位运算优化
思路及解法
观察这个运算:n & (n−1),其预算结果恰为把 n 的二进制位中的最低位的 1 变为 0 之后的结果。 如:6 &
(6−1)=4,6=(110)2,4=(100)2,运算结果 4 即为把 6 的二进制位中的最低位的 1 变为 0
之后的结果。这样我们可以利用这个位运算的性质加速我们的检查过程,在实际代码中,我们不断让当前的 n 与 n−1 做与运算,直到
n 变为 0 即可。因为每次运算会使得 n 的最低位的 1 被翻转,因此运算次数就等于 n 的二进制位中 1
的个数。
代码
class Solution {
public:
int hammingWeight(uint32_t n) {
int ret = 0;
while (n) {
n &= n - 1; //每次将最低位的1变为0,直到全为0。
ret++;
}
return ret;
}
};
复杂度分析
时间复杂度:O(log n)。循环次数等于 n 的二进制位中 1 的个数,最坏情况下 n 的二进制位全部为1。我们需要循环 log n次。
空间复杂度:O(1),我们只需要常数的空间保存若干变量。
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/number-of-1-bits/solution/wei-1de-ge-shu-by-leetcode-solution-jnwf/