代码随想录训练营第43天|518.零钱兑换II,377.组合总和IV
518.零钱兑换II
文章
思路
以amount为背包容量dp
对背包容量顺序遍历,因为可以不限次数使用同一个元素
代码
class Solution {
public int change(int amount, int[] coins) {
int i, j, k, n;
n = coins.length;
int[] dp = new int[amount + 1];
for (j = 0; j < amount + 1; ++j) {
if (j % coins[0] == 0) {
++dp[j];
}
}
for (i = 1; i < n; ++i) {
for (j = 1; j < amount + 1; ++j) {
if (j >= coins[i]) {
dp[j] += dp[j - coins[i]];
}
}
}
return dp[amount];
}
}
377.组合总和IV
文章
思路
没思路,看卡哥文章
完全背包并不是都不区分遍历顺序
像本题要求“不同序列视作不同组合”,那么就需要外层循环遍历背包容量,内层循环遍历元素
为什么有
d
p
[
j
]
=
∑
i
<
n
d
p
[
j
−
n
u
m
s
[
i
]
]
dp[j]=\sum_{i<n}dp[j-nums[i]]
dp[j]=∑i<ndp[j−nums[i]]成立
考虑第j轮外层循环,第i轮内层循环,则对应的新方案就是在 j-nums[i]容量下方案末尾增加一个i物品,这是一一对应的
代码
class Solution {
public int combinationSum4(int[] nums, int target) {
int i, j, n;
n = nums.length;
int[] dp = new int[target + 1];
dp[0] = 1;
for (j = 0; j < target + 1; ++j) {
for (i = 0; i < n; ++i) {
if (j >= nums[i]) {
dp[j] += dp[j - nums[i]];
}
}
}
return dp[target];
}
}
总结
不同序列视作不同组合,想了好久
如果再有几道题加深理解就好了