代码随想录训练营第43天|518.零钱兑换II,377.组合总和

代码随想录训练营第43天|518.零钱兑换II,377.组合总和IV

518.零钱兑换II

文章

代码随想录|0518.零钱兑换II

思路

以amount为背包容量dp
对背包容量顺序遍历,因为可以不限次数使用同一个元素

代码

class Solution {
    public int change(int amount, int[] coins) {
        int i, j, k, n;
        n = coins.length;
        int[] dp = new int[amount + 1];
        for (j = 0; j < amount + 1; ++j) {
            if (j % coins[0] == 0) {
                ++dp[j];
            }
        }
        for (i = 1; i < n; ++i) {
            for (j = 1; j < amount + 1; ++j) {
                if (j >= coins[i]) {
                    dp[j] += dp[j - coins[i]];
                }
            }
        }
        return dp[amount];
    }
}

377.组合总和IV

文章

代码随想录|0377.组合总和IV

思路

没思路,看卡哥文章
完全背包并不是都不区分遍历顺序
像本题要求“不同序列视作不同组合”,那么就需要外层循环遍历背包容量,内层循环遍历元素
为什么有 d p [ j ] = ∑ i < n d p [ j − n u m s [ i ] ] dp[j]=\sum_{i<n}dp[j-nums[i]] dp[j]=i<ndp[jnums[i]]成立
考虑第j轮外层循环,第i轮内层循环,则对应的新方案就是在 j-nums[i]容量下方案末尾增加一个i物品,这是一一对应的

代码

class Solution {
    public int combinationSum4(int[] nums, int target) {
        int i, j, n;
        n = nums.length;
        int[] dp = new int[target + 1];
        dp[0] = 1;
        for (j = 0; j < target + 1; ++j) {
            for (i = 0; i < n; ++i) {
                if (j >= nums[i]) {
                    dp[j] += dp[j - nums[i]];
                }
            }
        }
        return dp[target];
    }
}

总结

不同序列视作不同组合,想了好久
如果再有几道题加深理解就好了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值