Pandas

pandas是数据处理利器,基于Numpy构建。

内置数据结构

  1. Series由一维数组和与之相关的索引组成。可以保存任何类型的数据。
  2. DataFrame二维表格型数据。有行索引和列索引。

导入

一般命名为pd

pip install pandas  #安装
import pandas as pd

Series

创建

pd.Series( data, index, dtype, name, copy)
参数说明:

data:一组数据(ndarray 类型)。数据可以写成字典形式,就可以不需要index,字典的标签自动设为pandas数据的标签。

index:数据索引标签,如果不指定,默认从 0 开始。

dtype:数据类型,默认会自己判断。

name:设置名称。

copy:拷贝数据,默认为 False。

s1 = pd.Series([2,6,8,7,4],dtype='float64',name='first')
s1
#0    2.0
#1    6.0
#2    8.0
#3    7.0
#4    4.0
#Name: first, dtype: float64
s2 = pd.Series([2,6,8,7,4],[9,8,6,7,8],dtype='float64',name='first')
s2
#9    2
#8    6
#6    8
#7    7
#8    4
#Name: first, dtype: int64

dict创建.用标签索引时,不存在就记为NaN,标签可以重复。

data1 = {'monkey':'banana','cow':'grass','dog':'meat'}
s2 = pd.Series(data1)
s2
#monkey    banana
#cow        grass
#dog         meat
#dtype: object
s3 = pd.Series(data1,index=['monkey','monkey','dog','dolphin'])
s3
#monkey     banana
#monkey     banana
#dog          meat
#dolphin       NaN
#dtype: object

访问

DataFrame

pd.DataFrame( data, index, columns, dtype, copy)

data:一组数据(ndarray、series, map, lists, dict 等类型)。
index:索引值 / 行标签。
columns:列标签,默认为 (0, 1, 2, …, n) 。
dtype:数据类型。
copy:拷贝数据,默认为 False。

创建

f1 = ([1,3,5],[2,4,6])
g1 = pd.DataFrame(f1,index=['odd','even'],columns=['first','second','third'],dtype=float)
print(g1)
 #       first  second  third
 # odd     1.0     3.0    5.0
 # even    2.0     4.0    6.0

## DataFrame的值是数组的字典创建时,其各个数组的长度需要相同。
## 如果DataFrame的值是费数组时,没有这一限制,且自动将缺失值补成NaN。
f2 = {'a':'apple','b':'banana','c':'pear'} 
g2 = pd.DataFrame(f2,index=['one'])
print(g2)
 #          a       b     c
 # one  apple  banana  pear

pd.concat()可以通过相同行或者相同列的Series、DataFrame连接成一个

a = np.array([1,3],[5,7],[9,11])
m1 = [{'a':1,'b':2},{'a':5,'b':6}]
df1 = pd.DataFrame(m1)
m2 = [{'a':3,'b':4}]
df2 = pd.DataFrame(m2)
print(df1)
#    a  b
# 0  1  2
# 1  5  6
print(df2)
#    a  b
# 0  3  4
df = pd.concat([df1,df2],axis=0)
print(df)
#   a  b
# 0  1  2
# 1  5  6
# 0  3  4

查看数据

打开CSV格式的文件: file = pd.read_csv(r’某一文件名’)
1.查看前几条数据file.head( )
2.查看后几条数据file.tail( )
3.索引 file.index
4.列名 file.columns
5.值 file.values
6.对于数据的快速统计 file.describe
7.数据转置 file.T
8.按列排序:file.sort_values(by=[],ascending=[])
** 其中第一个变量是指定哪个列,第二个变量是排序顺序,False从小到大,True从大到小**

选择数据

  1. 利用标签选择数据
    df.loc[行标签,列标签]
  • 承接上一个concat连接的例子:
df.loc[0,'a']
#0    1
#0    3
#Name: a, dtype: int64
  1. 利用位置选择数据
    df.iloc[列位置,列位置]
df.iloc[1,0]
# 5
df.iloc[:,1]
#0    2
#1    6
#0    4
#Name: b, dtype: int64
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值