学习逆元(扩展欧几里得,费小马定理,线性求解)

逆元:方程ax≡1(mod n)的一个解x,称x为a模m的逆。

逆元的一个重要应用是求除法的模:

如求(a/b)%m=?

设b的逆元是k,则有(a/b)%m=((a/b)%m)((bk)%m)=(a/b*bk)%m=(ak)%m

因此求(a/b)%m的值相当于求b的逆元

 

求逆元的几种方法:

1、扩展欧几里得算法

求解方程ax≡1(mod m)相当于求解ax+my=1(ax-1是m的整数倍,设y是倍数,那么ax-1=my,即ax+my=1,y可以是负数);

有解的条件是:gcd(a,m)=1,即a和m互素。

void extend_gcd(int a,int b,int &x,int &y) {
	if(b==0) {
		x=1,y=0;
		return;
	}
	extend_gcd(b,a%b,x,y);
	int tmp=x;
	x=y;
	y=tmp-(a/b)*y;
}

int mod_inverse(int a,int m) {
	int x,y;
	extend_gcd(a,m,x,y);
	return(m+x%m)%m;	//x可能是负数,需要处理 
}

2、费马小定理

m 是素数 ,且 a%m≠0,那么 a^(m−1)≡1(mod m) 。

那么a*a^(m-2)≡1(mod m) ,则其逆元就是a^(m-2)。可以用快速幂求解逆元

typedef long long ll;
ll quick_pow(ll b, ll n) {
    ll ans = 1, po = b;
    while(n) {
        if(n & 1)   ans = (ans * po) % mod;
        po = (po * po) % mod;
        n >>= 1;
    }
    return ans;
}

3、线性求解逆元

在模质数p下,求1~n逆元,n<p。可以O(n)求出所有逆元。

假设 p=k*i+j, (1<i<p,j<i)

我们可以得知 p=k∗i+j≡0(mod p)

对两边同时乘以(ij)^(-1)可以得到 i^(-1)+k*j^(-1)=0

那么变化可得 i^(-1)=-k*j^(-1)  (1/i 就为i的逆元,1/j 就为j的逆元)

且已知1^(-1)1(mod p)

故可以得递推式a[i]=-(p/i)*a[p%i]

a[1]=1

 

另外:1->p模p的所有逆元值对应1->p中所有的数,比如p=7,那么1->6对应的逆元是 1 4 5 2 3 6

void inverse(int n, int p) {
    a[1] = 1;
    for (int i=2; i<=n; ++i) {
        a[i] = (ll) (p - p / i) * a[p%i] % p;
    }
}

 

 

参考链接:https://blog.csdn.net/guhaiteng/article/details/52123385

                   https://www.cnblogs.com/lifehappy/p/12763635.html

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值