An important topic nowadays in computer science is cryptography. Some people even think that
cryptography is the only important eld in computer science, and that life would not matter at all
without cryptography.
Alvaro is one of such persons, and is designing a set of cryptographic procedures for cooking paella.
Some of the cryptographic algorithms he is implementing make use of big prime numbers. However,
checking if a big number is prime is not so easy. An exhaustive approach can require the division of the
number by all the prime numbers smaller or equal than its square root. For big numbers, the amount
of time and storage needed for such operations would certainly ruin the paella.
However, some probabilistic tests exist that offer high con dence at low cost. One of them is the
Fermat test.
Let
a
be a random number between 2 and
n
#include <iostream>
#include <bits/stdc++.h>
#include <string.h>
#include <math.h>
using namespace std;
long long int quickmi(long long int a,int b,int c)
{
long long int ans=1;
while(b)
{
if(b&1)
{
ans=ans*a;
ans=ans%c;
}
a=a*a;
a=a%c;
b=b/2;
}
return ans;
}
int main()
{
bool as[650];
int a;
int t;
int f=1;
memset(as,false,sizeof(as));
int i,j;
for(i=2; i<sqrt(65000); i++)
{
if(as[i]==false)
{
for(j=2*i; j<65000; j+=i)
{
as[j]=true;
}
}
}
while(scanf("%d",&a)!=EOF)
{
if(a==0)
{
break;
}
if(as[a]==false)
{
cout << a << " " << "is normal." << endl;
}
else
{
f=1;
for(i=2; i<=a-1; i++)
{
t=quickmi(i,a,a);
if(t!=i)
{
f=0;
break;
}
}
if(f==1)
{
cout << "The number" << " " << a << " " << "is a Carmichael number." << endl;
}
else
{
cout << a << " " << "is normal." << endl;
}
}
}
return 0;
}