ResNet(残差网络)学习笔记

本文详细介绍了残差网络(ResNet)的设计原理,包括残差块的结构和快捷连接的作用。通过对比传统网络,展示了ResNet如何解决深度网络训练中的梯度消失问题,使得模型在增加层数后仍能保持训练误差持续降低,从而实现更好的训练效果。堆叠残差块形成的深层网络在实践中表现出色,是深度学习领域的一个重要突破。
摘要由CSDN通过智能技术生成

残差网络(ResNet)

##残差块
残差块
图中a[l]代表第l层的激活函数,后面的a[l+1]、a[l+2]分别表示第l+1和l+2层的激活函数。从a[l]到a[l+1]的计算步骤如下:
在这里插入图片描述
式中a[l]与加权矩阵W[l+1]进行运算,然后加上偏置向量b[l+1]得到z[l+1]。由a[l]到a[l+1]的过程是这样的:
在这里插入图片描述
a[l]经过线性运算后再用ReLu激活函数运算,得到a[l+1]。
下一步的运算(由a[l+1]到a[l+2])如下:
在这里插入图片描述
运算过程和上面一样,不再赘述。
由z[?]到a[?]的过程如下式:
在这里插入图片描述
常规网络的主路径如下图所示:
在这里插入图片描述
但是在残差网络中,我们直接将a[l]提到网咯后面的位置,我们称之为快捷路径(short cut)也可叫做skip connection,如图所示:
在这里插入图片描述
因此最后的a[l+2]的计算也需要改变,之前为a[l+2] = g(z[l+2]),经过残差网络后a[l+2] = g(z[l+2]+a[l])
残差网络网络图如图:
在这里插入图片描述

使用残差块可以训练更深层次的网络,建立残差网络的方法是堆叠大量的残差块,把残差块堆叠起来,形成一个深层网络。
堆叠的残差网络如图所示:
在这里插入图片描述
普通网络和残差网络经过深层次的卷积网络后的误差对比如下:
在这里插入图片描述
普通网络在深层次的卷积网络中,理论上训练误差会持续降低,但事实上,训练误差在下降到一定程度后会上升,不满足实际需求。在残差网络中,经过深层次的训练后训练误差持续降低,能够达到很好的训练效果。

文中图片来源:链接: link

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值