TF2.0深度学习实战(七):手撕深度残差网络ResNet

本教程将详细讲解ResNet深度残差网络,包括ResNet的背景、创新点和网络结构,并通过TensorFlow2.0实现ResNet-18模型,对CIFAR10数据集进行训练。ResNet解决了深度网络训练中的退化问题,通过捷径连接和瓶颈结构实现超深网络的高效训练。
摘要由CSDN通过智能技术生成

写在前面:大家好!我是【AI 菌】,一枚爱弹吉他的程序员。我热爱AI、热爱分享、热爱开源! 这博客是我对学习的一点总结与记录。如果您也对 深度学习、机器视觉、算法、Python、C++ 感兴趣,可以关注我的动态,我们一起学习,一起进步~
我的博客地址为:【AI 菌】的博客
我的Github项目地址是:【AI 菌】的Github
本教程会持续更新,如果对您有帮助的话,欢迎star收藏~

前言:
  本专栏将分享我从零开始搭建神经网络的学习过程,注重理论与实战相结合,力争打造最易上手的小白教程。在这过程中,我将使用谷歌TensorFlow2.0框架逐一复现经典的卷积神经网络:LeNet、AlexNet、VGG系列、GooLeNet、ResNet 系列、DenseNet 系列,以及现在比较流行的:RCNN系列、SSD、YOLO系列等。

  这一次我将复现非常经典的深度残差网络ResNet。首先在理论部分,我会依据论文对ResNet进行一个简要的讲解。然后在实战部分,我会手把手带你搭建第一个深度残差网络ResNet-18,对CIFAR10数据集进行训练与分类预测。

系列教程:
    实战教程:《TF2.0深度学习实战:图像分类/目标检测》
    理论教程:《深度学习笔记》


资源传送门:
    论文地址:《Deep Residual Learning for Image Recognition》
    论文详解:ResNet论文详解:《Deep Residual Learning for Image Recognition》
    github项目地址:【AI 菌】的Github


评论 86
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI 菌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值