写在前面:大家好!我是【AI 菌】,一枚爱弹吉他的程序员。我
热爱AI、热爱分享、热爱开源
! 这博客是我对学习的一点总结与记录。如果您也对深度学习、机器视觉、算法、Python、C++
感兴趣,可以关注我的动态,我们一起学习,一起进步~
我的博客地址为:【AI 菌】的博客
我的Github项目地址是:【AI 菌】的Github
本教程会持续更新,如果对您有帮助的话,欢迎star收藏~
前言:
本专栏将分享我从零开始搭建神经网络的学习过程,注重理论与实战相结合,力争打造最易上手的小白教程。在这过程中,我将使用谷歌TensorFlow2.0框架逐一复现经典的卷积神经网络:LeNet、AlexNet、VGG系列、GooLeNet、ResNet 系列、DenseNet 系列,以及现在比较流行的:RCNN系列、SSD、YOLO系列等。
这一次我将复现非常经典的深度残差网络ResNet。首先在理论部分,我会依据论文对ResNet进行一个简要的讲解。然后在实战部分,我会手把手带你搭建第一个深度残差网络ResNet-18,对CIFAR10数据集进行训练与分类预测。
系列教程:
实战教程:《TF2.0深度学习实战:图像分类/目标检测》
理论教程:《深度学习笔记》
资源传送门:
论文地址:《Deep Residual Learning for Image Recognition》
论文详解:ResNet论文详解:《Deep Residual Learning for Image Recognition》
github项目地址:【AI 菌】的Github