题目
峰值元素是指其值严格大于左右相邻值的元素。
给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。
你可以假设 nums[-1] = nums[n] = -∞ 。
你必须实现时间复杂度为 O(log n) 的算法来解决此问题。
思路
这道题本质就是在找一个坡,只要沿着一个坡到峰值,就是题目要的结果。但是时间复杂度这里要求必须是o(logn),所以第一想法就是二分查找。但是二分往往是被用在有序数组的,因为乱序二分查找很大概率结果不会正确,因此需要将思路转换一下。这里我们要找的是一个坡,所以在这个坡附近,或者说上坡的路径上,数字的排列是有序的,因此我们确定二分查找的边界应该放到待查数组中的一个坡上。
所以最关键的就是怎么找到一个二分的区间,前面说到上坡的过程是升序的,因此可以根据当前元素下一个元素的大小来调整二分的区间。
举例如下:
待查数组:[1,2,1,3,5,6,4]
left = 0, right = 6, index = (left+right) / 2
left:0; right:6; index:3, nums[3] = 3 < nums[4] = 5 --> left = index + 1 = 4
left:4; right:6; index:5, nums[5] = 6 > nums[6] = 4 --> right = index = 5
left:4; right:5; index:4, nums[4] = 5 < nums[5] = 6 --> left = index + 1 = 5
break
return nums[left] = num[5] = 6
先随机取一个数,这个index初始化是无所谓的,他一定会存在于一个上坡的区间中,这里为了方便后面迭代,就默认按照二分来找了。然后如果下一个值大于当前值,说明**[index, right]处在上坡**,更新left = index + 1;如果下一个值小于当前值,说明下一个值一定不是当前的二分区间,因为相当于在下坡了,所以更新right = index。然后就可以找到初始化index所在上坡区间的峰值。
代码
int findPeakElement(vector<int>& nums) {
int left = 0;
int right = nums.size() - 1;
while(left < right){
int index = left + (right - left) / 2;
if(nums[index] < nums[index + 1]){
left = index + 1;
}else right = index;
}
return left;
}
时间复杂度 O(logn),空间复杂度O(1)
总结
二分查找用于有序数组,时间复杂度为O(logn),但是如果要寻找局部最优解,也可以使用二分,主要是需要每次能找到正确二分的区间边界更新。