不变因子、初等因子和行列式因子

当谈论矩阵的因子时,我们通常会涉及到不变因子、初等因子和行列式因子。

  • 不变因子(Invariant Factors):不变因子是一个矩阵在某个域上的最小多项式的因子。它们描述了矩阵在这个域上的特征结构。不变因子告诉我们在该域上,矩阵所满足的最小多项式是什么样子的。

  • 初等因子(Elementary Factors):初等因子是构成不变因子的组成部分。不变因子是由一系列初等因子的乘积构成的。初等因子是描述矩阵在这个域上的特征值的幂次。

  • 行列式因子:行列式因子是矩阵的特征多项式的因子。矩阵的特征多项式是一个关于矩阵特征值的多项式,行列式因子就是这个多项式的因子。

用更简单的话来说,不变因子描述了矩阵在某个域上的最小特征多项式,初等因子是构成这个最小多项式的基本组成部分。而行列式因子则是矩阵特征值多项式的因子。

这些概念在研究矩阵的特征结构、特征值和特征向量等方面非常重要。不变因子和初等因子分解帮助我们理解矩阵在不同域上的行为和特性。

当谈论不变因子、初等因子和行列式因子时,可以通过一个具体的矩阵来展示这些概念的关系。

考虑一个 2 × 2 2 \times 2 2×2 的矩阵 A A A

A = [ 2 1 1 2 ] A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ \end{bmatrix} A=[2112]

首先,我们计算这个矩阵的特征值。特征值是使得 det ( A − λ I ) = 0 \text{det}(A - \lambda I) = 0 det(AλI)=0 成立的 λ \lambda λ。其中 det \text{det} det 表示行列式。

det ( A − λ I ) = det ( [ 2 − λ 1 1 2 − λ ] ) = ( 2 − λ ) 2 − 1 = λ 2 − 4 λ + 3 \text{det}(A - \lambda I) = \text{det}\left(\begin{bmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \\ \end{bmatrix}\right) = (2-\lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 det(AλI)=det([2λ112λ])=(2λ)21=λ24λ+3

解这个方程得到特征值 λ = 1 , 3 \lambda = 1, 3 λ=1,3

接着,我们求解特征向量。对于每个特征值,我们解线性方程组 ( A − λ I ) X = 0 (A - \lambda I)X = 0 (AλI)X=0

  • λ = 1 \lambda = 1 λ=1 时,解方程组 ( A − I ) X = 0 (A - I)X = 0 (AI)X=0

A − I = [ 1 1 1 1 ] A - I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ \end{bmatrix} AI=[1111]

解出来的特征向量是任何形如 [ x − x ] \begin{bmatrix} x \\ -x \end{bmatrix} [xx] 的向量,这里 x x x 是任意非零数。

  • λ = 3 \lambda = 3 λ=3 时,解方程组 ( A − 3 I ) X = 0 (A - 3I)X = 0 (A3I)X=0

A − 3 I = [ − 1 1 1 − 1 ] A - 3I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ \end{bmatrix} A3I=[1111]

解出来的特征向量是任何形如 [ x x ] \begin{bmatrix} x \\ x \end{bmatrix} [xx] 的向量,这里 x x x 是任意非零数。

现在来解释这些概念:

  • 不变因子是这个矩阵在某个域上的最小特征多项式,对于这个矩阵,在实数域上的不变因子是 ( λ − 1 ) ( λ − 3 ) (\lambda - 1)(\lambda - 3) (λ1)(λ3)

  • 初等因子是构成不变因子的组成部分。在这个例子中,不变因子的初等因子是 ( λ − 1 ) (\lambda - 1) (λ1) ( λ − 3 ) (\lambda - 3) (λ3)

  • 行列式因子是矩阵的特征多项式的因子,就是 ( λ − 1 ) ( λ − 3 ) (\lambda - 1)(\lambda - 3) (λ1)(λ3)

一个矩阵的特征多项式是一个关于变量 λ \lambda λ 的多项式,它描述了这个矩阵的特征值与 λ \lambda λ 之间的关系。

对于一个 n × n n \times n n×n 的矩阵 A A A,其特征多项式可以表示为 det ( A − λ I ) \text{det}(A - \lambda I) det(AλI),其中 det \text{det} det 表示行列式运算, I I I n n n 阶单位矩阵。

特征多项式的一般形式是 det ( A − λ I ) = λ n + c n − 1 λ n − 1 + c n − 2 λ n − 2 + ⋯ + c 1 λ + c 0 \text{det}(A - \lambda I) = \lambda^n + c_{n-1}\lambda^{n-1} + c_{n-2}\lambda^{n-2} + \dots + c_1 \lambda + c_0 det(AλI)=λn+cn1λn1+cn2λn2++c1λ+c0,其中 c i c_i ci 是矩阵 A A A 的代数余子式的和。

举例来说,对于一个 2 × 2 2 \times 2 2×2 的矩阵 A A A

A = [ a b c d ] A = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix} A=[acbd]

其特征多项式是 det ( A − λ I ) = det ( [ a − λ b c d − λ ] ) = ( a − λ ) ( d − λ ) − b c = λ 2 − ( a + d ) λ + ( a d − b c ) \text{det}(A - \lambda I) = \text{det}\left(\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \\ \end{bmatrix}\right) = (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + (ad - bc) det(AλI)=det([aλcbdλ])=(aλ)(dλ)bc=λ2(a+d)λ+(adbc)

特征多项式描述了特征值与矩阵本身的关系,通过求解特征多项式的根(也就是方程 det ( A − λ I ) = 0 \text{det}(A - \lambda I) = 0 det(AλI)=0 的解),我们可以获得矩阵的特征值。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
行列式因子:对于一个n阶矩阵A,其行列式因子是由它的每个n-1阶子阵的行列式组成的。在Matlab中,可以使用det()函数来计算一个矩阵的行列式因子。 不因子:对于一个n阶矩阵A,其不因子是由它的所有n阶子阵行列式的最大公约数组成的。在Matlab中,可以使用inv()和rank()函数计算出A的所有子阵,然后使用gcd()函数来计算它们的最大公约数。 初等因子:对于一个n阶矩阵A,其初等因子是由它的所有n阶子阵行列式的有理标准式的非零因子组成的。在Matlab中,可以使用poly()和roots()函数来计算一个矩阵的所有有理标准式,并使用nnz()函数来统计非零因子的数量。 Smith标准型:对于一个m x n矩阵A,其Smith标准型是一个(m x m)的对角矩阵D和一个(n x n)的对角矩阵E,使得A = PDE,其中P和Q是可逆矩阵。在Matlab中,可以使用smithForm()函数来计算一个矩阵的Smith标准型。 Jordan标准型:对于一个n阶矩阵A,其Jordan标准型是一个形如J = diag(J1, J2,..., Js)的分块对角矩阵,在每个块内部都是一个上三角矩阵和若干个对角块的组合。在Matlab中,可以使用jordan()函数来计算一个矩阵的Jordan标准型。 最小多项式:对于一个n阶矩阵A,其最小多项式是一个最低次数的不可约多项式p(x),使得p(A) = 0。在Matlab中,可以使用polyfit()函数来拟合一个矩阵的所有特征值,并使用roots()函数来计算最小多项式的系数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值