第8章 特征矩阵(矩阵相似、最小多项式、特征矩阵相似、不变因子、初等因子和若当标准型)

 1.相似

相似有相同的特征多项式,相同的特征值,相同的迹,A的行列式即det(A)也相同,相同的最小多项式,相同的秩。

tr(A) = tr(P^{-1}AP)从而求A的迹(特征值)转化为另一个矩阵的迹(特征值)。

例:

(1)AB都正定,则tr(AB) > 0,A正定,则有可逆阵P:

P^{T}AP = E\Rightarrow tr(AB) = tr(P^{T}AB(P^{T})^{-1}) = tr(P^{T}APP^{-1}B(P^{T})^{-1}) = tr(P^{-1}B(P^{T})^{-1}) = tr(P^{-1}B(P^{-1})^{T})

由于B正定,所以特征值都大于0,所以AB的迹大于0。

(2)根据特征值的情况,判断矩阵可逆

若A的特征值为0和1,则|A - E| = 0,而A + E是可逆的,因为-1不是A的特征值,|A+E|不等于0,另外此时A+E特征值就是1,2,特别地,A的特征值为a则f(A)的特征值为f(a)。相应地,如果|A+aE| = 0,则 -a 就是A的一个特征值。

(3)矩阵相似于对角阵,可以求矩阵的幂:

A^{n} = P^{-1}\Lambda PP^{-1}\Lambda PP^{-1}\Lambda P...=P^{-1}\Lambda ^{n} P

若线性变换\AA在一组基(\xi _{1},...,\xi _{n})下的矩阵为A,(\eta _{1},...,\eta _{n})下的矩阵为B,(\xi _{1},...,\xi _{n})(\eta _{1},...,\eta _{n})的过渡矩阵为X,则B=X^{-1}AX

 下面讨论一下求线性变换的特征值和特征向量,如果他们选不同的基去求,结果有什么联系?

首先我们知道求特征值和特征向量的步骤如下:

如果换成另一组基的话,我们知道由于不同基下的矩阵相似,相似有相同的特征多项式,就会有相同特征值,那么特征向量还相等吗,事实上,选的基不同,那么基下的坐标可能就变了,但是线性空间的向量等于基乘以坐标,所以特征向量可能相等,下面证明,选的基不同,求的特征向量仍然是相同的

这个书上也没有讲,主要是看到求特征向量时,书上说的是选一组基,既然是选那就是不唯一,所以就尝试证明了选不同基特征向量还是否相同。

2.最小多项式

满足f(A) = O的最低次数的多项式。

P^{-1}AP = B=>P^{-1}f(A)P = f(B)

f(A)=0当且仅当f(B)=0。A和B相似,则有相同的最小多项式f(x)满足f(A)=0,f(B)=0。

根据汉密尔顿-凯莱定理:

f(\lambda )=\left | \lambda E- A \right |=a_{n}x^{n} + ... + a_{0}\Rightarrow f(A) = a_{n}A^{n}+...+a_{0}E=0

幂零矩阵的特征值只能是0,因为它的最小多项式满足\lambda ^{k}=0。不过不一定可对角化,如果是对角线上的若当块的话。

最小多项式整除特征多项式。最小多项式相等不一定相似。

已知最小多项式,可以得出矩阵A若当标准型中,对角线都是A的特征值,若当标准型为对角矩阵,表示矩阵可对角化。若矩阵可对角化等价于则矩阵A的最小多项式为一次因式的乘积:

若当标准型存在若当块:

J =\begin{pmatrix} a & & & \\ 1& \ddots & & \\ & \ddots & a & \\ & & 1 & a \end{pmatrix}

J的特征多项式和最小多项式都为(\lambda - a)^{k}, k大于2,所以不可对角化意味着最小多项式有一个因式次数大于1。

最小多项式相同,不一定相似,如对角阵diag(1,1,2)和diag(1,2,2)。只有最小多项式可以知道若当矩阵的大概结构但需要分类讨论。特征多项式也一样,相同特征多项式也不一定相似,如上面的J和对角阵diag(a,a,a)都是(\lambda - a)^{k},但是一个是若当块,一个是对角阵。

3. \lambda-矩阵

1.矩阵中的元素为\lambda的多项式,即P[\lambda ]的元素,称为\lambda-矩阵。

2.A(\lambda)B(\lambda)=B(\lambda)A(\lambda)=E则称A(\lambda )可逆。

3.A(\lambda )可逆的充要条件是|A(\lambda )|的值等于常数d:

A(\lambda )B(\lambda )都是多项式,|A(\lambda )||B(\lambda )|相乘等于1,意味着A(\lambda )B(\lambda )都是零次多项式,反过来,|A(\lambda )|=d,取B(\lambda )=\frac{A(\lambda )^{*}}{|A(\lambda )|}\Rightarrow \frac{A(\lambda )^{*}}{|A(\lambda )|}A(\lambda )=A(\lambda )\frac{A(\lambda )^{*}}{|A(\lambda )|}=E。即|A(\lambda )|=d可以得到A(\lambda )可逆。

4.A(\lambda )B(\lambda )等价,如果可以通过初等变换相互转化。

5.任意A(\lambda )等价于标准型\begin{pmatrix} d_{1}(\lambda ) & & & & \\ & \ddots & & & \\ & & d_{k}(\lambda ) & & \\ & & & 0 \\ & & & & \ddots \end{pmatrix}

其中d_{i}(\lambda )|d_{i+1}(\lambda ),i=1,...,k-1

证明:A(\lambda )至少有一个元素不能被a_{11}(\lambda )元素除得尽,可以找到与A(\lambda )等价的矩阵,左上角元素的次数低于a_{11}(\lambda )

由于次数最低为1,上述步骤不可能无限循环下去,因此能够将矩阵化成一个每个元素都能被a_{11}(\lambda )元素除得尽的等价矩阵。(a_{ij}(\lambda )=a_{11}(\lambda ) \varphi ( \lambda )

再将第一行和第一列消去,化成一个左上角元素a_{11}(\lambda )能除得尽A(\lambda )中每一个元素的等价矩阵

\begin{pmatrix} a_{11}(\lambda )& O \\ O & A_{1}(\lambda ) \end{pmatrix}

利用数学归纳法,A_{1}(\lambda )经过初等变换,可以将它的左上角a_{22}(\lambda )能除得尽其中每个元素,且被a_{11}(\lambda )除得尽的等价矩阵。最终变换为标准型。

6.k级子式的首相系数为1的最大公因式D_{k}(\lambda )称为A(\lambda )的k级行列式因子,若\lambda-矩阵等价,则具有相同的秩和各级行列式因子。

不改变的行和列,子式完全相同无须考虑。

第一种初等变换交换两行,交换的k级行列式的值只改变符号。第二种某一行乘以c倍,行列式结果相差c倍。前两种初等变换,他们的行列式因子显示是相同的。

第三种,将第j行乘以\varphi ( \lambda )加到第i行,即a_{ik}(\lambda )=a_{jk}(\lambda ) \varphi ( \lambda )+a_{ik}(\lambda ),k=1,...n

不包含第j行的子式的结果为\begin{vmatrix} ... & & & \\ a_{i1}(\lambda ) +a_{j1}(\lambda )\varphi (\lambda ) & ... & & a_{in}(\lambda ) +a_{jn}(\lambda )\varphi (\lambda )\\ ...& & & \\ a_{k1}(\lambda ) & ... & & a_{kn}(\lambda ) \end{vmatrix}

\begin{vmatrix} ... & & & \\ a_{i1}(\lambda ) & ... & & a_{in}(\lambda ) \\ ...& & & \\ a_{k1}(\lambda ) & ... & & a_{kn}(\lambda ) \end{vmatrix}\begin{vmatrix} ... & & & \\ a_{j1}(\lambda )\varphi (\lambda ) & ... & &a_{jn}(\lambda )\varphi (\lambda )\\ ...& & & \\ a_{k1}(\lambda ) & ... & & a_{kn}(\lambda ) \end{vmatrix}

右边的都是原有矩阵的k级子式,它们的和都能除得尽k阶子式的公因式,所以第三种初等变换得到的矩阵k级行列式因子相等,k取遍1到n,各级行列式因子都相等。

A(\lambda )等价的标准型\begin{pmatrix} d_{1}(\lambda ) & & & & \\ & \ddots & & & \\ & & d_{k}(\lambda ) & & \\ & & & 0 \\ & & & & \ddots \end{pmatrix}和初等变换不改变k级行列式因子,我们可以根据标准型的行列式因子计算A(\lambda )的行列式因子,0能够被任何多项式除得尽,所以只需计算对角线上的k级子式的公因式,即行列式因子:

D_{k}(\lambda )=d_{1}(\lambda )\cdots d_{k}(\lambda ),反过来由d_{k}(\lambda )=\frac{ D_{k}(\lambda )}{ D_{k-1}(\lambda )},公因式是唯一的,所以D_{k}(\lambda )都是唯一的,所以d_{1}(\lambda ),...d_{k}(\lambda )都是唯一的。即标准型唯一,d_{1}(\lambda ),...d_{k}(\lambda )称为不变因子

7.矩阵A与B相似的充要条件是\lambda E- A\lambda E- B等价

\lambda E- A=P_{0}(\lambda E- B)Q_{0},比较多项式的系数,可知P_{0}Q_{0}=EA=P_{0}BQ_{0}从而相似。

引理,看成多项式相除即可,即考虑多项式U(x)除以x-a_{0},要么除尽,要么它的余数次数小于1,即余数为常数,商为次数小于U(x)的多项式:

8.矩阵相似充要条件是特征矩阵\lambda E- A\lambda E- B等价(即能够初等变换相互转化),特征矩阵相似的充要条件是行列式因子和不变因子完全相同(充分性是因为初等变换不改变行列式因子,必要性:若不变因子相同,说明两个特征矩阵都能初等变换为同一个标准型,实际上标准型也能初等变换为矩阵A,B,因为A和B标准型相同也就等价,等价有传递性)。

因此,矩阵相似的充要条件也可以认为它们的特征矩阵有相同的不变因子。

​​​​​​特征矩阵|\lambda E- A|的值为多项式不为0,因此秩为n,标准型中一定有n个不变因子,它们的乘积等于|\lambda E- A|。等价相当于乘以初等矩阵,所以\lambda E- A=P_{1}...P_{s}\Lambda Q_{1}...Q_{k} ,\Lambda为标准型\lambda矩阵,即特征矩阵和标准型等价由于初等矩阵的秩全为1,所以|\lambda E- A|=|\Lambda | 

显然特征多项式也等于n级行列式因子因此给出不变因子D_{n}(\lambda )=d_{1}(\lambda )\cdots d_{n}(\lambda ),有了不变因子就可以求得特征多项式 。

9.初等因子

次数大于0的不变因子,分解成首项系数为1的一次因式方幂的乘积,这些一次因式方幂是初等因子,相同按次数计算。

 根据定义,不变因子确定了,初等因子就确定了。反过来,初等因子相同,将相同因式按照升幂的方式填入标准型中(初等因子是从其中一个不变因子的因式分解中取出来的,所以每一个初等因子一定在某一个不变因子里),考虑这些初等因子在标准型矩阵的位置:

最高次在最后一个不变因子中,次高次数在倒数第二个位置,往后类推,数量不够的因式补适当个1,所有的初等因子填完,就能够唯一确定标准型和不变因子。

所以不变因子相同等价于初等因子相同,因此矩阵和矩阵相似又等价于和这个矩阵有相同初等因子。这里的矩阵是数字矩阵,数字矩阵的行列式是特征多项式,所以最高次数出现在对应的特征矩阵的右下角,但并不是任何\lambda-矩阵可以认为初等因子相同能唯一确定标准型:

10、求若当矩阵的初等因子,若已知矩阵A的初等因子,则可以确定A相似于有相同初等因子的若当矩阵。

对角形矩阵将相邻位置的相同因式交换位置,得到的矩阵和对角矩阵等价:

1. f1(x)和g1(x)互素,则(f1(x),f2(x))和(g1(x),g2(x))的公因式d1(x),d2(x)互素。

这是因为假如d1(x),d2(x)不互素(d1(x)整除f1(x),f2(x),d2(x)整除g1(x),g2(x)),就存在一个次数大于0的多项式d3(x),它整除d1(x),d2(x),当然也整除f1(x),f2(x),g1(x),g2(x)。即d3(x)是f1(x)和g1(x)的公因式。与f1(x)和g1(x)矛盾。

2. d1(x)互素和d2互素,又能整除d(x),则d1(x)d2(x) | d(x)用到了多项式中的性质二。

3. d(x) | f1(x)g1(x)则可以找到f(x)和g(x)使d(x)=f(x)g(x),且f(x) | f1(x), g(x) | g1(x)

 

对角矩阵的某一个相邻子式等价,则两个矩阵也等价(和矩阵正定的充要条件为顺序主子式都大于0证明过程差不多):

最后得到的等价的对角阵,主对角线上的相同一次因式的方幂是升幂排序,为其标准型。这些一次因式都是标准型的初等因子,也是原来的对角形矩阵的初等因子。

求矩阵的初等因子:

1.求和它相似的若当矩阵或者对角阵的初等因子,对角线上的一次因式的方幂就是所求的初等因子。反过来,已知矩阵的初等因子,可求得若当矩阵。

2. 特征矩阵化成标准型,从不变因子中找出初等因子,推算出若当矩阵的每个若当块,这样他们有相同初等因子,意味着矩阵总是可以相似于若当矩阵。若当矩阵中按照特征值划分,若当块为k阶方阵时,有一个k-1级行列式因子为1,k级行列式为(\lambda - a)^{k},k全部等于1,意味着矩阵就可以对角化,即初等因子的一次因式的次数全部为1。这样矩阵由于相似于该若当矩阵,他们特征值就相同。因此a就是其中一个特征值。

  • 10
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
行列式因子:对于一个n阶矩阵A,其行列式因子是由它的每个n-1阶子阵的行列式组成的。在Matlab中,可以使用det()函数来计算一个矩阵的行列式因子不变因子:对于一个n阶矩阵A,其不变因子是由它的所有n阶子阵行列式的最大公约数组成的。在Matlab中,可以使用inv()和rank()函数计算出A的所有子阵,然后使用gcd()函数来计算它们的最大公约数。 初等因子:对于一个n阶矩阵A,其初等因子是由它的所有n阶子阵行列式的有理标准式的非零因子组成的。在Matlab中,可以使用poly()和roots()函数来计算一个矩阵的所有有理标准式,并使用nnz()函数来统计非零因子的数量。 Smith标准型:对于一个m x n矩阵A,其Smith标准型是一个(m x m)的对角矩阵D和一个(n x n)的对角矩阵E,使得A = PDE,其中P和Q是可逆矩阵。在Matlab中,可以使用smithForm()函数来计算一个矩阵的Smith标准型。 Jordan标准型:对于一个n阶矩阵A,其Jordan标准型是一个形如J = diag(J1, J2,..., Js)的分块对角矩阵,在每个块内部都是一个上三角矩阵和若干个对角块的组合。在Matlab中,可以使用jordan()函数来计算一个矩阵的Jordan标准型最小多项式:对于一个n阶矩阵A,其最小多项式是一个最低次数的不可约多项式p(x),使得p(A) = 0。在Matlab中,可以使用polyfit()函数来拟合一个矩阵的所有特征值,并使用roots()函数来计算最小多项式的系数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heine162

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值