1.相似
相似有相同的特征多项式,相同的特征值,相同的迹,A的行列式即det(A)也相同,相同的最小多项式,相同的秩。
从而求A的迹(特征值)转化为另一个矩阵的迹(特征值)。
例:
(1)AB都正定,则tr(AB) > 0,A正定,则有可逆阵P:
由于B正定,所以特征值都大于0,所以AB的迹大于0。
(2)根据特征值的情况,判断矩阵可逆
若A的特征值为0和1,则|A - E| = 0,而A + E是可逆的,因为-1不是A的特征值,|A+E|不等于0,另外此时A+E特征值就是1,2,特别地,A的特征值为a则f(A)的特征值为f(a)。相应地,如果|A+aE| = 0,则 -a 就是A的一个特征值。
(3)矩阵相似于对角阵,可以求矩阵的幂:
若线性变换在一组基下的矩阵为A,下的矩阵为B,到的过渡矩阵为X,则
下面讨论一下求线性变换的特征值和特征向量,如果他们选不同的基去求,结果有什么联系?
首先我们知道求特征值和特征向量的步骤如下:
如果换成另一组基的话,我们知道由于不同基下的矩阵相似,相似有相同的特征多项式,就会有相同特征值,那么特征向量还相等吗,事实上,选的基不同,那么基下的坐标可能就变了,但是线性空间的向量等于基乘以坐标,所以特征向量可能相等,下面证明,选的基不同,求的特征向量仍然是相同的:
这个书上也没有讲,主要是看到求特征向量时,书上说的是选一组基,既然是选那就是不唯一,所以就尝试证明了选不同基特征向量还是否相同。
2.最小多项式
满足的最低次数的多项式。
f(A)=0当且仅当f(B)=0。A和B相似,则有相同的最小多项式f(x)满足f(A)=0,f(B)=0。
根据汉密尔顿-凯莱定理:
幂零矩阵的特征值只能是0,因为它的最小多项式满足。不过不一定可对角化,如果是对角线上的若当块的话。
最小多项式整除特征多项式。最小多项式相等不一定相似。
已知最小多项式,可以得出矩阵A若当标准型中,对角线都是A的特征值,若当标准型为对角矩阵,表示矩阵可对角化。若矩阵可对角化等价于则矩阵A的最小多项式为一次因式的乘积:
若当标准型存在若当块:
J =
J的特征多项式和最小多项式都为, k大于2,所以不可对角化意味着最小多项式有一个因式次数大于1。
最小多项式相同,不一定相似,如对角阵diag(1,1,2)和diag(1,2,2)。只有最小多项式可以知道若当矩阵的大概结构但需要分类讨论。特征多项式也一样,相同特征多项式也不一定相似,如上面的J和对角阵diag(a,a,a)都是,但是一个是若当块,一个是对角阵。
3. -矩阵
1.矩阵中的元素为的多项式,即的元素,称为-矩阵。
2.则称可逆。
3.可逆的充要条件是的值等于常数d:
和都是多项式,和相乘等于1,意味着和都是零次多项式,反过来,,取。即可以得到可逆。
4.,等价,如果可以通过初等变换相互转化。
5.任意等价于标准型
其中。
证明:至少有一个元素不能被元素除得尽,可以找到与等价的矩阵,左上角元素的次数低于。
由于次数最低为1,上述步骤不可能无限循环下去,因此能够将矩阵化成一个每个元素都能被元素除得尽的等价矩阵。()
再将第一行和第一列消去,化成一个左上角元素能除得尽中每一个元素的等价矩阵
。
利用数学归纳法,经过初等变换,可以将它的左上角能除得尽其中每个元素,且被除得尽的等价矩阵。最终变换为标准型。
6.k级子式的首相系数为1的最大公因式称为的k级行列式因子,若-矩阵等价,则具有相同的秩和各级行列式因子。
不改变的行和列,子式完全相同无须考虑。
第一种初等变换交换两行,交换的k级行列式的值只改变符号。第二种某一行乘以c倍,行列式结果相差c倍。前两种初等变换,他们的行列式因子显示是相同的。
第三种,将第j行乘以加到第i行,即,
不包含第j行的子式的结果为
= +
右边的都是原有矩阵的k级子式,它们的和都能除得尽k阶子式的公因式,所以第三种初等变换得到的矩阵k级行列式因子相等,k取遍1到n,各级行列式因子都相等。
由等价的标准型和初等变换不改变k级行列式因子,我们可以根据标准型的行列式因子计算的行列式因子,0能够被任何多项式除得尽,所以只需计算对角线上的k级子式的公因式,即行列式因子:
,反过来由,公因式是唯一的,所以都是唯一的,所以都是唯一的。即标准型唯一,称为不变因子。
7.矩阵A与B相似的充要条件是和等价
若,比较多项式的系数,可知,从而相似。
引理,看成多项式相除即可,即考虑多项式除以,要么除尽,要么它的余数次数小于1,即余数为常数,商为次数小于的多项式:
8.矩阵相似充要条件是特征矩阵和等价(即能够初等变换相互转化),特征矩阵相似的充要条件是行列式因子和不变因子完全相同(充分性是因为初等变换不改变行列式因子,必要性:若不变因子相同,说明两个特征矩阵都能初等变换为同一个标准型,实际上标准型也能初等变换为矩阵A,B,因为A和B标准型相同也就等价,等价有传递性)。
因此,矩阵相似的充要条件也可以认为它们的特征矩阵有相同的不变因子。
特征矩阵的值为多项式不为0,因此秩为n,标准型中一定有n个不变因子,它们的乘积等于。等价相当于乘以初等矩阵,所以 ,为标准型矩阵,即特征矩阵和标准型等价由于初等矩阵的秩全为1,所以
显然特征多项式也等于n级行列式因子因此给出不变因子,有了不变因子就可以求得特征多项式 。
9.初等因子
次数大于0的不变因子,分解成首项系数为1的一次因式方幂的乘积,这些一次因式方幂是初等因子,相同按次数计算。
根据定义,不变因子确定了,初等因子就确定了。反过来,初等因子相同,将相同因式按照升幂的方式填入标准型中(初等因子是从其中一个不变因子的因式分解中取出来的,所以每一个初等因子一定在某一个不变因子里),考虑这些初等因子在标准型矩阵的位置:
最高次在最后一个不变因子中,次高次数在倒数第二个位置,往后类推,数量不够的因式补适当个1,所有的初等因子填完,就能够唯一确定标准型和不变因子。
所以不变因子相同等价于初等因子相同,因此矩阵和矩阵相似又等价于和这个矩阵有相同初等因子。这里的矩阵是数字矩阵,数字矩阵的行列式是特征多项式,所以最高次数出现在对应的特征矩阵的右下角,但并不是任何-矩阵可以认为初等因子相同能唯一确定标准型:
10、求若当矩阵的初等因子,若已知矩阵A的初等因子,则可以确定A相似于有相同初等因子的若当矩阵。
对角形矩阵将相邻位置的相同因式交换位置,得到的矩阵和对角矩阵等价:
1. f1(x)和g1(x)互素,则(f1(x),f2(x))和(g1(x),g2(x))的公因式d1(x),d2(x)互素。
这是因为假如d1(x),d2(x)不互素(d1(x)整除f1(x),f2(x),d2(x)整除g1(x),g2(x)),就存在一个次数大于0的多项式d3(x),它整除d1(x),d2(x),当然也整除f1(x),f2(x),g1(x),g2(x)。即d3(x)是f1(x)和g1(x)的公因式。与f1(x)和g1(x)矛盾。
2. d1(x)互素和d2互素,又能整除d(x),则d1(x)d2(x) | d(x)用到了多项式中的性质二。
3. d(x) | f1(x)g1(x)则可以找到f(x)和g(x)使d(x)=f(x)g(x),且f(x) | f1(x), g(x) | g1(x)
对角矩阵的某一个相邻子式等价,则两个矩阵也等价(和矩阵正定的充要条件为顺序主子式都大于0证明过程差不多):
最后得到的等价的对角阵,主对角线上的相同一次因式的方幂是升幂排序,为其标准型。这些一次因式都是标准型的初等因子,也是原来的对角形矩阵的初等因子。
求矩阵的初等因子:
1.求和它相似的若当矩阵或者对角阵的初等因子,对角线上的一次因式的方幂就是所求的初等因子。反过来,已知矩阵的初等因子,可求得若当矩阵。
2. 特征矩阵化成标准型,从不变因子中找出初等因子,推算出若当矩阵的每个若当块,这样他们有相同初等因子,意味着矩阵总是可以相似于若当矩阵。若当矩阵中按照特征值划分,若当块为k阶方阵时,有一个k-1级行列式因子为1,k级行列式为,k全部等于1,意味着矩阵就可以对角化,即初等因子的一次因式的次数全部为1。这样矩阵由于相似于该若当矩阵,他们特征值就相同。因此a就是其中一个特征值。