两个求和符号分开合并的转换

∑ i = 1 M a i T ⋅ ∑ i = 1 M a i \sum_{i=1}^Ma_i^T \cdot \sum_{i=1}^Ma_i i=1MaiTi=1Mai

当用两个求和符号表示 ∑ i = 1 M a i T ⋅ ∑ i = 1 M a i \sum_{i=1}^Ma_i^T \cdot \sum_{i=1}^Ma_i i=1MaiTi=1Mai时,需要考虑 a i a_i ai的维度。

假设 a i a_i ai是一个列向量,其维度为 n × 1 n \times 1 n×1。因此, a i T a_i^T aiT是一个行向量,维度为 1 × n 1 \times n 1×n

∑ i = 1 M a i T \sum_{i=1}^Ma_i^T i=1MaiT将所有行向量相加,得到一个维度为 1 × n 1 \times n 1×n的行向量,而 ∑ i = 1 M a i \sum_{i=1}^Ma_i i=1Mai将所有列向量相加,得到一个维度为 n × 1 n \times 1 n×1的列向量。

在这种情况下, ∑ i = 1 M a i T ⋅ ∑ i = 1 M a i \sum_{i=1}^Ma_i^T \cdot \sum_{i=1}^Ma_i i=1MaiTi=1Mai可以用两个求和符号表示为:

∑ i = 1 M ∑ j = 1 M a i T ⋅ a j \sum_{i=1}^M \sum_{j=1}^M a_i^T \cdot a_j i=1Mj=1MaiTaj

这里 i i i j j j分别代表矩阵的行和列。这个双重求和表示对所有可能的 i i i j j j组合计算 a i T ⋅ a j a_i^T \cdot a_j aiTaj,并将其相加得到一个标量值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值