∑ i = 1 M a i T ⋅ ∑ i = 1 M a i \sum_{i=1}^Ma_i^T \cdot \sum_{i=1}^Ma_i ∑i=1MaiT⋅∑i=1Mai
当用两个求和符号表示 ∑ i = 1 M a i T ⋅ ∑ i = 1 M a i \sum_{i=1}^Ma_i^T \cdot \sum_{i=1}^Ma_i ∑i=1MaiT⋅∑i=1Mai时,需要考虑 a i a_i ai的维度。
假设 a i a_i ai是一个列向量,其维度为 n × 1 n \times 1 n×1。因此, a i T a_i^T aiT是一个行向量,维度为 1 × n 1 \times n 1×n。
∑ i = 1 M a i T \sum_{i=1}^Ma_i^T ∑i=1MaiT将所有行向量相加,得到一个维度为 1 × n 1 \times n 1×n的行向量,而 ∑ i = 1 M a i \sum_{i=1}^Ma_i ∑i=1Mai将所有列向量相加,得到一个维度为 n × 1 n \times 1 n×1的列向量。
在这种情况下, ∑ i = 1 M a i T ⋅ ∑ i = 1 M a i \sum_{i=1}^Ma_i^T \cdot \sum_{i=1}^Ma_i ∑i=1MaiT⋅∑i=1Mai可以用两个求和符号表示为:
∑ i = 1 M ∑ j = 1 M a i T ⋅ a j \sum_{i=1}^M \sum_{j=1}^M a_i^T \cdot a_j i=1∑Mj=1∑MaiT⋅aj
这里 i i i和 j j j分别代表矩阵的行和列。这个双重求和表示对所有可能的 i i i和 j j j组合计算 a i T ⋅ a j a_i^T \cdot a_j aiT⋅aj,并将其相加得到一个标量值。