当涉及LU分解时,矩阵A的性质对于分解的唯一性至关重要:
-
矩阵A的各阶顺序主子式都不为0时,LU分解唯一:
如果矩阵A的各个阶次的主子式都不为0,则LU分解是唯一的。 -
矩阵A的顺序主子式为0,但经过顺序高斯消去法矩阵可划为上三角(对角线上的元素可为0),可进行LU分解,但分解不唯一:
例如:A = [ 1 1 1 2 2 1 3 3 1 ] A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 3 & 3 & 1 \end{bmatrix} A= 123123111 经过高斯消元变为 U = [ 1 1 1 0 0 − 1 0 0 − 2 ] U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -2 \end{bmatrix} U= 1001001−1−2
-
矩阵A的顺序主子式为0,经过顺序高斯消去法不可以划为上三角则不可进行LU分解:
例如:A = [ 1 2 3 2 4 1 4 6 7 ] A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 1 \\ 4 & 6 & 7 \end{bmatrix} A= 124246317 经过高斯消元后变为 U = [ 1 2 3 0 0 − 5 0 − 2 − 5 ] U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -5 \\ 0 & -2 & -5 \end{bmatrix} U= 10020−23−5−5
在实际应用中,矩阵的这些特性对于LU分解的可行性和唯一性都具有重要影响。LU分解对于解线性方程组、求逆矩阵以及其他许多数值计算任务都是非常有用的,但需要注意矩阵的特性以确定是否可以进行唯一的分解。