LU分解的唯一性说明

当涉及LU分解时,矩阵A的性质对于分解的唯一性至关重要:

  1. 矩阵A的各阶顺序主子式都不为0时,LU分解唯一
    如果矩阵A的各个阶次的主子式都不为0,则LU分解是唯一的。

  2. 矩阵A的顺序主子式为0,但经过顺序高斯消去法矩阵可划为上三角(对角线上的元素可为0),可进行LU分解,但分解不唯一
    例如:

    A = [ 1 1 1 2 2 1 3 3 1 ] A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 3 & 3 & 1 \end{bmatrix} A= 123123111 经过高斯消元变为 U = [ 1 1 1 0 0 − 1 0 0 − 2 ] U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -2 \end{bmatrix} U= 100100112

  3. 矩阵A的顺序主子式为0,经过顺序高斯消去法不可以划为上三角则不可进行LU分解
    例如:

    A = [ 1 2 3 2 4 1 4 6 7 ] A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 1 \\ 4 & 6 & 7 \end{bmatrix} A= 124246317 经过高斯消元后变为 U = [ 1 2 3 0 0 − 5 0 − 2 − 5 ] U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -5 \\ 0 & -2 & -5 \end{bmatrix} U= 100202355

在实际应用中,矩阵的这些特性对于LU分解的可行性和唯一性都具有重要影响。LU分解对于解线性方程组、求逆矩阵以及其他许多数值计算任务都是非常有用的,但需要注意矩阵的特性以确定是否可以进行唯一的分解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值