LU分解是将矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积。矩阵可以不是NxN的矩阵
一个可逆矩阵可以进行LU分解当且仅当它的所有子式都非零。如果要求其中的L矩阵(或U矩阵)为单位三角矩阵,那么分解是唯一的。同理可知,矩阵的LDU可分解条件也相同,并且总是唯一的。
即使矩阵不可逆,LU仍然可能存在。实际上,如果一个秩为k的矩阵的前k个顺序主子式不为零,那么它就可以进行LU分解,但反之则不然。
目前,在任意域上一个方块矩阵可进行LU分解的充要条件已经被发现,这些充要条件可以用某些特定子矩阵的秩表示。用高斯消元法来得到LU分解的算法也可以扩张到任意域上。
任意矩阵A(不仅仅是方块矩阵)都可以进行LUP分解。其中的L和U矩阵是方阵,P矩阵则与A形状一样。
这里给出高斯消元法的思想
Matrix A (M x N)
for(column index i from 1 to N){
select max(A[i][i...M]), swap to row i //第i列中从第i行到第N行绝对值最大值元素的行作为第i行
if(A[i][i] is not zero){
for(row index j from i + 1 to M){
A[j][i] /= A[i][i]
for(column index k from i + 1 to N){
A[j][k] -= A[j][i] * A[i][k]
}
}
}
}
L如下
1, 0, 0, ... , 0
A[21], 1, 0, ... , 0
A[31], A[32], 1, ... , 0
A[41], A[42], A[