损失函数发展历程

  1. 均方误差(Mean Squared Error,MSE)

    • 时间: 20世纪中叶早期。
    • 描述: 通过计算模型预测值与实际值之间的平方差来衡量误差。
    • 原理: 目标是最小化平方差,推动模型更接近实际数据分布。
  2. 交叉熵损失函数(Cross-Entropy Loss)

    • 时间: 20世纪末至21世纪初。
    • 描述: 用于测量两个概率分布之间的差异,包括二元交叉熵和多元交叉熵。
    • 原理: 通过最小化预测分布与实际分布的交叉熵,促使模型更准确地预测类别。
  3. Hinge Loss

    • 时间: 1990年代后期至21世纪初。
    • 描述: 主要用于支持向量机(SVM)的训练,后来引入神经网络中,特别在图像分类领域。
    • 原理: 鼓励模型产生更大的间隔,对于错误分类的样本施加惩罚。
  4. Huber Loss

    • 时间: 20世纪末至21世纪初。
    • 描述: 用于回归问题,结合了均方误差和绝对值误差,对异常值更具鲁棒性。
    • 原理: 提供了均方误差和绝对值误差的平滑过渡,对异常值不那么敏感。
  5. 感知损失函数(Perceptron Loss)

    • 时间: 20世纪中叶至20世纪末。
    • 描述: 用于感知器模型,是一种阶跃函数形式的损失函数,主要用于二分类问题。
    • 原理: 通过最小化误分类样本到决策边界的距离,推动感知器学习正确分类。
  6. Focal Loss

    • 时间: 2017年。
    • 描述: 用于解决类别不平衡问题,通过调节关注度参数提高模型对于困难样本的关注度。
    • 原理: 对容易分类的样本降低权重,增强对难以分类的样本的关注度。
  7. GAN 损失函数(Generative Adversarial Network Loss)

    • 时间: 2014年。
    • 描述: 由生成器和判别器组成,包括生成器损失和判别器损失,用于生成对抗网络。
    • 原理: 通过生成器和判别器的博弈过程,推动生成器生成更逼真的样本,判别器更准确地区分真伪。
  8. Dice Loss

    • 时间: 2016年左右。
    • 描述: 用于医学图像分割等领域,评估预测和真实分割之间的相似性。
    • 原理: 基于集合相似度,对重叠部分的预测和真实分割给予更高权重。
  9. Triplet Loss

    • 时间: 2015年左右开始在人脸识别任务中引入。
    • 描述: 用于学习相似性,尤其在人脸识别等领域应用广泛。
    • 原理: 确保同类样本在嵌入空间中更接近,不同类样本更远离。
  • 8
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值