代码随想录算法训练营第36天 | 435.无重叠区间 763.划分字母区间 56.合并区间

无重叠区间

Alt
这道题按左边界排序和右边界排序都是可以的。主要就是要统计出不重合区间的数目。如果按照右区间排序,下面这张图十分形象:
Alt
这样去掉一组重叠区间后,剩下的那个区间它的右端点最小,能让后面产生尽量多的不重叠空间。
右区间排序写法:

class Solution{
	static bool cmp(vector<int>& a, vector<int>& b){
		return a[1] < b[1];
	}
public:
	int eraseOverlapIntervals(vector<vector<int>>& intervals){
		sort(intervals.begin(), intervals.end(), cmp);
		int count = 1;  //统计不重叠的区间数目,初始化为1,一定有一个不重叠的区间
		for(int i = 1; i < intervals.size(); i++){
			if(intervals[i][0] >= intervals[i - 1][1]){  // 出现了一个新的不重叠区间
				count++;
			}
			else  intervals[i][1] = intervals[i - 1][1];
		}
		return intervals.size() - count;
	}
};

左边界排序写法:

class Solution{
	static bool cmp(vector<int>& a, vector<int>& b){
		return a[0] < b[0];
	}
public:
	int eraseOverlapIntervals(vector<vector<int>>& intervals){
		sort(intervals.begin(), intervals.end(), cmp);
		int result = 0;
		for(int i = 1; i < intervals.size(); i++){
			if(intervals[i][0] < intervals[i - 1][1]){
				intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]);
				// 其实效果和按右边界排序是一样的,只不过这里自己维护最小的右边界
				result++;
			}
		}
		return result;
	}
};

需要注意一个问题,如果是统计不重叠的区间,那就是从1计数,若是统计重叠的区间,则是从0开始计数

划分字母区间

Alt
相当于寻找每一个字母出现的边界,如果找到了之前所有出现字母的最远边界,说明这个边界就是一个分割点。
所以可以分为两步来处理:

  1. 找到每个字母出现的最远边界
  2. 重新遍历数组,更新遇到的字母出现的最远边界,如果当前遍历到下标与当前所有字母的最远边界相等,则找到了一个分割点。
class Solution{
public:
	vector<int> partitionLabels(string s) {
		int bound[26] = {0};
		for(int i = 0; i < s.size(); i++){
			bound[s[i] - 'a'] = i;  // 记录每个字母出现的最远位置下标
		}
		int left = 0, right = INT_MIN;
		vector<int> result;
		for(int i = 0; i < s.size(); i++){
			right = max(right, bound[s[i] - 'a']);  // 更新当前遇到的字母出现的最远位置
			if(i == right){
				result.push_back(right - left + 1);  // 当前到达的下标与最远边界相等,找到了一个分割点
				left = i + 1;
			}
		}
		return result;
	}
};

与前几道区间题类似的,这道题可以记录每个字母的起止区间,然后将重叠的区间进行合并,得到的不重叠的区间就是满足条件的,可以让区间内的字母只出现在区间内。

class Solution {
    static bool cmp(vector<int>& a, vector<int>& b){
        return a[0] < b[0];
    }
public:
    vector<vector<int>> computeBound(string s){
        vector<vector<int>> intervals(26, vector<int>(2, 0));
        for(int i = 0; i < s.length(); i++) {
            int index = s[i] - 'a';
            if(intervals[index][0] == 0){
                intervals[index][0] = i + 1;
            }
            intervals[index][1] = i + 1;
        }
        vector<vector<int>> filtered;
        for(int i = 0; i < intervals.size(); i++){
            if(intervals[i][0] != 0){
                filtered.push_back(intervals[i]);
            }
        }
        return filtered;
    }
    vector<int> partitionLabels(string s) {
        vector<vector<int>> intervals = computeBound(s);
        sort(intervals.begin(), intervals.end(), cmp);
        vector<int> result;
        for(int i = 1; i < intervals.size(); i++){
            if(intervals[i][0] > intervals[i - 1][1]){
                result.push_back(intervals[i - 1][1] - intervals[i - 1][0] + 1);
            }
            else{
                intervals[i][0] = intervals[i - 1][0];
                intervals[i][1] = max(intervals[i - 1][1], intervals[i][1]);
            }
            if(i == intervals.size() - 1){  
            	// 但要注意的是这种写法中,因为到末端以后没有更大的下标出现,从而记录末端区间,需要对末端单独处理
                result.push_back(intervals[i][1] - intervals[i][0] + 1);
            }
        }
        return result;
    }
};

合并区间

Alt
这道题与上一道题可以说一模一样了,要实现的就是合并区间,只不过这道题是要区间,上面那道是要区间长度。

class Solution{
	static bool cmp(vector<int>& a, vector<int>& b){
		return a[0] < b[0];
	}
public:
	vector<vector<int>> merge(vector<vector<int>>& intervals){
		sort(intervals.begin(), intervals.end(), cmp);
		result.push_back(intervals[0]);  // 后续如果有重叠,继续更新右边界
		for(int i = 0; i < intervals.size(); i++){
			if(intervals[i][0] <= result.back()[1]){  // 如果重叠,更新右边界最大值
				result.back()[1] = max(result.back()[1], intervals[i][1]);
			}
			else{
				result.push_back(intervals[i]);  // 不重叠,直接填入结果数组
			}
		}
		return result;
	}
};

或者我们也可以沿用上一道题的思路,同样是合并区间啦。

class Solution {
    static bool cmp(vector<int>& a, vector<int>& b) {
        return a[0] < b[0];
    }
public:
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        sort(intervals.begin(), intervals.end());
        vector<vector<int>> result;
        for(int i = 1; i < intervals.size(); i++){
            if(intervals[i][0] <= intervals[i - 1][1]){
                intervals[i][0] = intervals[i - 1][0];
                intervals[i][1] = max(intervals[i][1], intervals[i - 1][1]);
            }
            else{
                result.push_back(intervals[i - 1]);  // 注意这里添加i - 1
            }
        }
        result.push_back(intervals[intervals.size() - 1]);  // 同样末端单独处理
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值