题目来源:翻硬币
题目描述
小明正在玩一个“翻硬币”的游戏。
桌上放着排成一排的若干硬币。我们用 * 表示正面,用 o 表示反面(是小写字母,不是零)。
比如,可能情形是:** oo ***oooo
如果同时翻转左边的两个硬币,则变为:oooo***oooo
现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢?
我们约定:把翻动相邻的两个硬币叫做一步操作。
输入格式
两行等长的字符串,分别表示初始状态和要达到的目标状态。
输出格式
一个整数,表示最小操作步数
数据范围
输入字符串的长度均不超过100。
数据保证答案一定有解。
输入样例1:
oo
输出样例1:
5
输入样例2:
ooo***
ooo***
输出样例2:
1
思路
这一题乍一看和八数码问题相似 考虑使用bfs暴力搜索 然后一看 数据范围是100,100个字符对应99种操作 每个操作(这里我们将对1号字符的操作称为操作1 二号字符的操作成为操作2 对最后一个元素不用操作 因为答案保证一定有解 所以操作数是99) 有两种选择 做或者不做 复杂度是2^99次 肯定超时
我们继续观察题目的隐藏性质:
- 操作的顺序没有影响
- 每种操作执行0次或者1次
那么我们直接从前往后枚举 看看是否需要操作即可 需要就操作 不需要就跳过 没有那么复杂 但是我没想到 蔡是原罪…
代码
#include<bits/stdc++.h>
using namespace std;
string a,b;
void turn(int i)
{
if(a[i]=='*') a[i]='o';
else a[i]='*';
}
int main()
{
cin>>a>>b;
int res=0;
for(int i=0;i<a.size()-1;i++)
if(a[i]!=b[i])
{
res++;
turn(i),turn(i+1);
}
cout<<res<<endl;
return 0;
}