第二课 词向量简介

本文介绍了词向量的基本概念,包括One-hot、Bag of Words、TF-IDF、N-gram等表示方法及其优缺点。重点讨论了分布式表示和Word2Vec的Skip-Gram模型,以及损失函数与负例采样。此外,还涵盖了词嵌入的评估任务和Dataloader在PyTorch中的实现。最后,提到了模型训练与在MEN和Simplex-999数据集上的评估。
摘要由CSDN通过智能技术生成

》词向量:在很多时候需要把单词转换为数值,单词包含人类表达信息。

》离散表示:One-hot

语料库   John likes to watch movies. Mary likes too.

              John also likes to watch football games.

词典   {"John": 1, "likes": 2, "to": 3, "watch": 4, "movies": 5, "also": 6, "football": 7, "games": 8, "Mary": 9, "too": 10}

One-hot表示   John: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

                        likes: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

                        too : [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

  ·词典包含10个单词,每个单词有唯一索引

  ·在词典中的顺序和在句子中的顺序没有关联

》离散表示:Bag of Words

文档的向量表示可以直接将各词的词向量表示加和

词权重   ( 词在文档中的顺序没有被考虑)

TF-IDF (Term Frequency - Inverse Document Frequency)

词t的IDF weight

N: 文档总数, nt: 含有词t的文档数

[0.693, 1.386, 0.693, 0.693, 1.099, 0, 0, 0, 0.693, 0.693]

Binary weighting

短文本相似性,Bernoulli Naive Bayes

[1, 1, 1, 1, 1, 0, 0, 0, 1, 1]

》离散表示:Bi-gram和N-gram

优点:考虑了词的顺序

缺点:词表的膨胀

》离散表示的问题

无法平衡词向量之间的关系

太稀疏,很难捕捉文本的含义

        ·词表维度随着语料库增长膨胀

        ·n-gram词序列随语料库膨胀更快</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值