素数
素数又称质数,是除了1和本身之外不能被其他数整除的一类数字。用数学语言描述即是,对给定的正整数n
,如果对于任意的正整数a(1<a<n)
,都有n%a!=0
成立,那么称n
是素数;否则称为合数。
注:1 既不是素数也不是合数。
素数的判断
一个整数n
如果不能被2,3,...,n-1
整除,那么n
为素数。使用遍历的方法判断,时间复杂度为O(n)。但在某些数据量大的题目中,该复杂度实际有点大,需要更快的方法。
注意到:如果在2~n-1
中存在n
的约数,设为k
,即n%k==0
,那么由k*(n/k)==n
可知,n/k
也是n
的一个约数。且k
与n/k
中一定满足其中一个小于等于sqrt(n)
,另一个大于等于sqrt(n)
。因此只需判断n
能否被2,3,...,sqrt(n)
中的一个整除,即可判断是否为素数。该算法时间复杂度为O(sqrt(n))。
代码如下:
bool is_prime(int n) {
if (n <= 1) {
return false;
} else {
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
}
素数表的获取
通过判断是否为素数,可以直接得出1~n
范围内的所有素数,即从1~n
开始枚举,如果是素数就加入素数表。枚举时间复杂度为O(n),判断是否为素数时间复杂度为O(sqrt(n)),总的时间复杂度为O(n*sqrt(n))。
求100以内的素数表
代码如下:
int prime[MAXN], p_num = 0; //prime存放所有的素数,p_num为素数的个数
bool p[MAXN] = {0}; //p[i]==ture即为素数
void find_prime() {
for (int i = 1; i < MAXN; i++) {
if (is_prime(i)) {
prime[p_num++] = i;
p[i] = true;
}
}
}
完整的代码如下:
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 101;
bool is_prime(int n) {
if (n <= 1) {
return false;
} else {
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
}
int prime[MAXN], p_num = 0; // prime存放所有的素数,p_num为素数的个数
bool p[MAXN] = {0}; // p[i]==ture即为素数
void find_prime() {
for (int i = 1; i < MAXN; i++) {
if (is_prime(i) == true) {
prime[p_num++] = i;
p[i] = true;
}
}
}
int main() {
find_prime();
for (int i = 0; i < p_num; i++) {
printf("%d", prime[i]);
}
return 0;
}
埃氏筛法(Eratosthenes)
上述的算法对于10^5
级别的都可以承受,但如果数字范围更大,那么将会崩溃。使用埃氏筛法时间复杂度可低至O(nloglogn)。该算法从小到大枚举所有的数,对每一个素数,筛去它的所有倍数,剩下的都是素数了。
举例子说明:求1~15
所有的素数。
①2是素数(唯一需要事先确定的),因此筛去所有2的倍数,即{4,6,8,10,12,14},剩{2,3,5,7,9,11,13,15}。
②3没有被筛去,因此3是素数,筛去3所有的倍数,即{6,9,12,15},剩{2,3,5,7,11,13}。
③4已经被筛去,因此4不是素数。
④5没有被筛,因此5是素数,筛去所有5的倍数,即{10,15},剩{2,3,5,7,11,13}。
⑤6已经被筛去,因此6不是素数。
⑥7没有被筛去,因此7是素数,筛去所有7的倍数,即{14},剩{2,3,5,7,11,13}。
以此类推…
最终得到所有素数,即{2,3,5,7,11,13}。
由例子可以发现,如果到达某个数x时,它没有被前面的数筛掉,那么它就是素数。
100以内素数代码如下:
const int MAXN = 101;
int prime[MAXN], p_num = 0;
bool p[MAXN] = {0}; // i is a prime,return false
void find_prime() {
for (int i = 2; i < MAXN; i++) {
if (p[i] == false) { // if i is a prime
prime[p_num++] = i;
for (int j = i + i; j < MAXN; j += i) {
p[j] = true;
}
}
}
}
总结:
- 1不是素数,也不是合数;
- 涉及到素数问题,通常打表是一个不错的方法;
- 素数的表长最少要比n大于1;
- 注意时间复杂度。
质因子分解
一个正整数可以写成一个或者多个质数的乘积形式,可以先把素数表打印出来。前面说过,如果一个正整数n
存在除了1和本身之外的因子,那么一定在sqrt(n)
左右成对出现。当应用到质因子上来,会有一个强化结论:
对于一个正整数n
,如果存在[2,n]
之间的质因子,那么这些质因子要不全都小于等于sqrt(n)
,要不只存在一个大于等于sqrt(n)
的质因子,其余的质因子都小于等于sqrt(n)
。
①首先定义一个结构体,用来存放质因子和对应的个数:
struct factor{
int x,cnt;
}fac[10];
fac数组只需要到10个就足够了,因为十个素数相乘已经超出了int范围。
②枚举1~sqrt(n)范围内的所有质因子p,判断p是否为n的因子。
- 如果p是n的因子,那么给fac数组增加质因子p,并初始化其个数为0。如果p还是n的质因子,就让n不断的除以p,每次令p的个数加一,直到p不再是n的因子为止。
if(n%prime[i]==0){
fac[num].x=prime[i];
fac[num].cnt=0;
while(n%prime[i]==0){
fac[num].cnt++;
n/=prime[i];
}
num++;
}
- 如果p不是n的因子就直接跳过。
③如果在上述步骤结束后,n依旧大于1,说明有且仅有一个大于sqrt(n)
的质因子,有可能是n本身,这时将该质因子加入fac数组,并令其个数为1。
if(n!=1){
fac[num].x=n;
fac[num++].cnt=1;
}
最后,fac数组里存放的就是质因子分解的结果。