为什么byte的最大是2的7次方减一而最小是负2的7次方

本文详细解析了计算机为何规定-0为-128,介绍了补码的概念,展示了负数在计算机中的表示方法和加减运算原理,以及这一设计在byte、short和int中的应用。重点讲述了补码如何解决正负数和±0问题,并揭示了这一看似随意的规定背后的巧妙之处。
摘要由CSDN通过智能技术生成

简书

直接给总结:计算机规定了0000 0000 代表0,1000 0000代表的-0没有意义,必须找个~127~127之外的数和它对应,「人为规定-0就是-128」,而且这么做完美适合计算机做减法运算。

来我们一步步分析分析:

1.byte占用8位,每位用0或1表示,能够表示256(2^8)个数据。

2.这8位分为符号位(最高位)和数值位(剩余七位),符号位0表示正数,1表示负数。

3.按上一步的理解,容易得到(+127:0111 1111、+1:0000 0001、+0:0000 0000、-0:1000 0000、-1:1000 0001、-127:1111 1111),计算机底层定义了+0(0000 0000)就是0,那么“可怜的-0”又该何去何从呢?计算机遇到这个二进制该如何处理呢?总不能把这两个都对应0吧,这显然是资源浪费。

4.到这里我们都认为最高位是不参与计算数值的,仅仅是一个符号位,按这种思路byte的八位是无论如何也表示不出-128。而“可怜的-0”又不知道自己代表谁,不得而知“可怜的-0”就是-128。(为什么呢?凭什么呢?你说代表-128就代表-128呀!为什么不能是+128、-250、+250.......)。

5.到这里我们已经很粗浅地回答了-128~127中的-128的由来,基本也回答了这个题目。


6.可是然而但是——对于程序员来说,上诉的分析【首先】是结论正确,但是过程错了。错误在于——负数的二进制表示是错误的,比如-127:1111 1111,这是不对的。计算机发现了1111 1111会把它认为是-1而不是-127。【其次】没有解释为什么-0最后表示成-128。

7.计算机基础知识普及:原码、反码、补码
        <1>计算机存储有符号的整数是都是存储它们的补码。Java语言都是有符号位的。
        <2>正数和0的补码、反码是本身原码;所以对于正数来说,可以理解为不存在反码和补码。
        <3>负数的反码是是符号位不变,其它位取反;补码是在负数的基础上加1(符号位不变)。负数就是矫情啊!
        <4>计算机中用补码进行加法运算。

8.接着从人的思考方式理解下当计算机处理1111 1111的过程,首位是1,自然是负数,而且这是补码,那么对应的原码就是,先减1,变成1111 1110,符号位不变,其他取反,变成1000 0001,也就是-1!所以从10000001到11111111依次表示-127到-1。。对之前的分析过程是不是很打脸?。

9.最后来解决这个-128为什么可以用1000 0000表示。
   这里我分析的是byte,它就8位。在无符号位的二进制中128的表示为1000 0000。有符号位的情况下byte好像无法表示+128或-128。
   如果我们假设现在byte不是占用8位,而是9位,最高位是符号位。那么-128就能够是1 1000 0000,其补码也是1 1000 0000,很神奇吧,一样的。-128的补码尾八位就是1000 0000。那就规定【1000 0000是-128的补码,且-128是没有原码和反码的,即不能利用1000 0000反推其原码和反码】。

10.如果你对9步的推导表示不太接受,那么简单就认为计算机规定了1000 0000就是-128,是一种人为设计没有什么道理可以言(据说是印度阿三设计的)。其实这么设计也是很巧妙的,在于:
    【其一】对于如果大于8位的有符号整数数据类型,-128的补码尾八位刚好是1000 0000。
    【其二】比如127(0111 1111)加1(0000 0001)刚好得到-128(1000 0000),-128(1000 0000)加1(0000 00001)等于-127(1000 0001)这样从-128~127的反码首尾相连,形成了一个闭环,就像时钟一样。   
    【其三】在计算机中减法运算可以转换成加法运算,比如8-1——>8+(-1)——>补码运算:(0000 1000) + (1111 1111) = (0000 0111) 刚好是7。-128+127——>(1000 0000) + (0111 1111) = (1111 1111)刚好是-1,-128的补码完美的适用于减法。


结论:
    【1】计算机中负数是用补码的形式保存、并用它参与加减法运算的,减法会被转换为加法,计算机中没有加法运算。
    【2】反码是为了解决减法运算,补码是为了解决反码产生的±0的问题。参考(https://blog.csdn.net/boatalways/article/details/17027573)
    【3】对人而言二进制所代表的值一定是从原码求出的,开头如果是1的二进制,一定要说明其实原码、反码还是补码。
    【4】在原码、反码、补码相互转换以及求对应的十进制求值时,符号位是绝不参与的,但是在加减过程中,是参与位运算的。
    【5】计算机中规定了-0对应的二进制就是0,那么-0就没有意义了,必须找一个数和它对应。
    【6】byte的最小值-128、short的最小值-32768、int的最小值-2147483648都是用对应的-0的原码来进行表示,这是人为规定的、人为规定的、人为规定的。但是这么规定又很巧妙,妙在上述10中的三点。

作者:你等过上帝吗
链接:https://www.jianshu.com/p/47761557bab0
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值