推荐系统
!一直往南方开.
这个作者很懒,什么都没留下…
展开
-
推荐系统之特征工程
数据预处理数据可划分为结构化数据与非结构化数据,定义如下:结构化数据代表性的有数值型、字符串型数据非结构化数据代表的有文本型、图像型、视频型以及语音型数据结构化数据预处理预处理一般可分为缺失值处理、离群值(异常值)处理以及数据变换缺失值处理一般来说,未经处理的原始数据中通常会存在缺失值、离群值等,因此在建模训练之前需要处理好缺失值。缺失值处理方法一般可分为:删除、统计值填充、统一值填充、前后向值填充、插值法填充、建模预测填充和具体分析7种方法。直接删除缺失值最简单的处理方法是删除原创 2020-05-15 13:30:46 · 488 阅读 · 0 评论 -
推荐系统简介
推荐系统推荐系统是信息过载所采用的措施,面对海量的数据信息,从中快速推荐出符合用户特点的物品。解决一些人的“选择恐惧症”;面向没有明确需求的人。解决如何从大量信息中找到自己感兴趣的信息。解决如何让自己生产的信息脱颖而出,受到大众的喜爱。推荐系统的目的让用户更快更好的获取到自己需要的内容让内容更快更好的推送到喜欢它的用户手中让网站(平台)更有效的保留用户资源推荐系统的应用推荐系统的基本思想推荐系统的数据分析要推荐物品或内容的元数据,例如关键字,分类标签,基因描述等;系统原创 2020-05-12 00:37:47 · 321 阅读 · 0 评论