题目:
给定一个整数n,将数字1~n排成一排,将会有很多种排列方法。
现在,请你按照字典序将所有的排列方法输出。
输入格式
共一行,包含一个整数n。
输出格式
按字典序输出所有排列方案,每个方案占一行。
数据范围
1≤n≤7
输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
思路:
这是一道基础的dfs+回溯,一层一层递归
代码1:
#include<iostream>
using namespace std;
const int N = 10;
int n;
int path[N];
bool st[N];
void dfs(int cnt){
if(cnt == n){
for(int i = 0;i < n;i ++) printf("%d ", path[i]);
puts("");
return ;
}
for(int i = 1;i <= n;i ++){
if(!st[i]){
path[cnt] = i;
st[i] = true;
dfs(cnt + 1);
st[i] = false;
}
}
}
int main(){
cin >> n;
dfs(0);
return 0;
}
时间复杂度:
O(n!) 就是dfs递归的次数,第一次n,第二次n-1,第三次n-2。。。以此类推
空间复杂度:
O(logn) 即logH,H为递归树的高度,就是程序运行时,堆栈段创建的栈帧的个数,每一层对应一个栈帧(确切来说不是同一个,因为不是同时执行,是用了最下面一层的,退栈再加入新栈)
代码2:
#include<iostream>
using namespace std;
const int N = 1010;
int n, A[N];
void print_permutation(int cur){
if(cur == n){
for(int i = 0;i < n;i ++) printf("%d ", A[i]);
printf("\n");
return ;
}else{
for(int i = 1;i <= n;i ++){
int ok = 1;
for(int j = 0;j < cur;j ++) // 之前有过 就不能选了
if(A[j] == i) ok = 0;
if(ok){
A[cur] = i;
print_permutation(cur+1);
}
}
}
}
int main(){
cin >> n;
print_permutation(0);
return 0;
}
这个时间复杂度要比上一个高一些,因为每次添加的时候,都需要遍历一下之前是否存在该元素。第一种写法可以说是拿空间换时间
反思:
基础不牢地动山摇,学算法是如此,考研亦是如此,学习即如此!