排列组合的写法_数学中,排列组合A C P分别代表什么?求详细。

展开全部

排列组合中P是旧版教材的写法,后来新版教材将P改成A,所以A和P是一样的,都是排列数。而636f70793231313335323631343130323136353331333365666237C是排列组合中的组合数。

1、排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示,旧版教材中用 P(n,m)表示。

计算公式:

dad6ab6c58328330a2c3f69c8dd153d6.png

b9a19b9866c392f27c56684425e82c2a.png

2、组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。

计算公式:

7a8e6ddeb4819e41379c9852fc386c92.png

C(n,m)=C(n,n-m)。(n≥m)

扩展资料:

排列组合中的基本计数原理

1、加法原理和分类计数法

(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

(2)第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

(3)分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

2、乘法原理和分步计数法

(1) 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

(2)合理分步的要求

任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

### C++ 表达式中乘法运算的执行时间分析 在 C++ 中,表达式 `a*b*c` 和 `a*(b*c)` 的语义虽然一致,但由于括号的存在改变了运算次序,这可能导致编译器生成不同的中间表示或机器码,进而影响执行时间。以下是对此现象的具体分析。 #### 1. **运算次序与结合性** 对于基本数据类型(如 `int`, `float`, 或 `double`),C++ 中的乘法运算符具有左结合性,因此 `a*b*c` 实际上被解析为 `(a*b)*c`。而通过显式添加括号的方式,如 `a*(b*c)`,则强制指定了另一种计算顺序。理论上,对于数值类型的简单乘法操作,两种写法的结果完全相同[^1]。但在实际实现过程中,由于现代 CPU 架构的特点以及浮点数精度问题,这种差异可能带来潜在的影响。 #### 2. **编译器优化行为** 当前主流的 C++ 编译器(如 GCC、Clang 和 MSVC)都具备高度智能化的优化能力。针对简单的数学表达式,它们通常会尝试将代码转换为最高效的版本。例如,在没有特殊上下文约束的情况下,`a*b*c` 可能会被重新排列以适应目标架构上的 SIMD 指令集或其他加速手段[^3]。即便原代码中有明显的括号指示特定值路径,只要参与运算的对象是非重载的标准算术类型,最终产生的二进制形式往往趋于一致。 下面是一个示例演示如何编写测试用例来验证这一点: ```cpp // 测试代码片段 double product1(double a, double b, double c){ return a * b * c; // 默认左结合形式 } double product2(double a, double b, double c){ return a * (b * c); // 强制右结合形式 } ``` 使用 `-O2` 或更高的优化级别编译以上函数后观察汇编输出,可以看到两者的内部结构几乎无异[^2]。 #### 3. **特殊情况下的表现** 尽管如此,在某些特殊场景下仍然可能出现显著区别: - **浮点数舍入误差**:当处理高精度浮点数时,不同分组策略可能会累积略微不同的截断误差,尽管这对总体性能几乎没有直接影响,却足以改变个别临界条件下的判断依据。 - **大整数溢出风险**:如果涉及非常大的整数值相乘,则中途结果超出存储范围的可能性增大,适当调整组合方式有助于规避不必要的异常中断。 - **自定义类的操作符重载**:一旦某个因子属于用户定义的数据类型而非原始内置类型,那么额外的方法调用开销便成为不可忽略的因素之一[^4]。 综上所述,绝大多数常规情形之下,`a*b*c` 和 `a*(b*c)` 的运行效率应当视为等价;不过出于严谨态度考虑,在面临极高要的任务环境里还是建议仔细衡量各种备选方案的实际效果后再做取舍。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值