python-----数据分析之Numpy

本文介绍了Python科学计算库Numpy的基础知识,包括Numpy的N维数组特性,创建数组的方法,矩阵转置,索引和切片,数值修改,获取矩阵四角元素,数组形状修改,数组拼接与分割,元素添加和删除,以及Numpy的统计函数。通过两个案例展示了如何利用Numpy进行学生身高体重统计分析和股价统计分析。
摘要由CSDN通过智能技术生成

Numpy简介

NUMPY:科学计算基础软件包
N维数组:每一个元素类型一致
NumPy 是一个运行速度非常快的数学库,主要用于数组计算,主要包含:

一个强大的N维数组对象 ndarray;
广播功能函数;
线性代数、傅里叶变换、随机数生成等功能;

了解更多Numpy: Numpy教程

Numpy常用方法

创建数组三种方法

详细操作请看代码链接: 创建数组方法code
直接将数组/列表传入array方法中, 将数据类型转换为ndarray.

a = np.array([1, 2, 3, 4, 5])

直接生成指定的数值

c = np.arange(1, 6)

将range对象传入array方法中

b = np.array(range(1, 6))

矩阵的转置

详细操作请看代码链接矩阵的转置code
实现转置有三种方法:array.T、array.transpose()、array.swapaxes(1,0)
最常用为array.T

Numpy的索引和切片

只有一个参数时,默认获取的是行,有两个参数时,第一个参数代表行,第二个参数代表列。行和列的索引是从0开始的。

取第2行: array[1]
 取第3列:array[:, 2]
 获取第2行3列的数字:array[1, 2]

详细操作请看代码链接索引和切片code

Numpy中数值的修改

详细操作请看代码链接Numpy中数值的修改
Numpy中数值的修改有三种方法࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值