MATLAB工具库:数据统计分析工具MvCAT、MhAST等
The University of California-软件库-Software
工具1:Multivariate Copula Analysis Toolbox (MvCAT)
MvCAT 是用 Matlab 开发的一个用户友好的工具箱(软件),旨在帮助科学家和研究人员进行全面的多变量依赖性分析。它使用 26 种具有 1 到 3 个参数的 copula 族来描述两个随机变量的依赖结构。MvCAT 使用局部优化和贝叶斯框架下的 Markov 链蒙特卡洛模拟来对比可用数据,从而推断 copula 族的参数值。如果执行贝叶斯分析和 MCMC 模拟,则可以从 copula 参数的后验分布中获得每个 copula 族的不确定性估计。MCMC 在贝叶斯框架下的使用不仅提供了全局最优解的稳健估计,而且还近似了 copula 族的后验分布,可用于构建 copula 的预测不确定性范围。局部优化方法容易陷入局部最优解(有关更多信息,请参见 Sadegh 等人,2017 年)。用户可以选择可用的 26 种 copula 族的任意子集,MvCAT 将执行分析并根据其性能对选定的 copula 族进行排序。
本工具包使用的性能指标包括似然度、阿基米德信息准则(AIC)、贝叶斯信息准则(BIC)、纳什-苏特克利夫效率(NSE)和均方根误差(