【深度学习】深度学习和强化学习算法——深度 Q 网络DQN

深度 Q 网络(DQN)是一种结合 深度学习 和 强化学习 的算法,主要用于解决高维状态空间的强化学习问题。DQN 由 Google DeepMind 在 2015 年提出,并成功应用于 Atari 游戏,使 AI 能够超越人类玩家。

什么是DQN

Q-learning是一种经典的强化学习算法,而DQN(Deep Q-Network),即深度Q网络,是一种基于深度学习的Q-Learing算法和强化学习算法,它是首个成功将深度学习应用于解决强化学习任务的算法之一。
在这里插入图片描述

DQN基于值迭代(Value Iteration)的思想,通过估计每个状态动作对的价值函数Q值来指导智能体在每个状态下选择最佳的动作。简单来说,就是通过深度学习训练,得到一个函数Q(s,a)可以根据输入状态s,得到最佳动作a。
在这里插入图片描述

DQN 的背景

在 Q-learning 传统强化学习算法中,我们使用 Q 表(Q-table) 存储每个状态-动作对的 Q 值。然而,当状态空间变得巨大甚至是连续的时,Q 表的方法变得不可行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值