准备集群
准备三台虚拟机分别安装hadoop、zookeeper,其中hadoop可以选择之前使用的或者重新复制一份,(PS:如果为复制得到的hadoop请提前删除data、logs文件夹,否则格式化时可能会出错。)
修改配置文件
涉及到路径或集群名字请自行修改!!!
core-site.xml
<configuration>
<!-- 指定 HDFS 中 NameNode 的地址 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop-cluster</value>
</property>
<!-- 指定 Hadoop 运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/HA/hadoop-2.7.2/data/tmp</value>
</property>
<!-- 声明 journalnode 服务器存储目录-->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/module/HA/hadoop-2.7.2/data/tmp/jn</value>
</property>
<!-- 配置zk集群 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
</property>
</configuration>
hdfs-site.xml
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<!-- 完全分布式集群名称 -->
<property>
<name>dfs.nameservices</name>
<value>hadoop-cluster</value>
</property>
<!-- 集群中 NameNode 节点都有哪些 -->
<property>
<name>dfs.ha.namenodes.hadoop-cluster</name>
<value>nn1,nn2</value>
</property>
<!-- nn1 的 RPC 通信地址 -->
<property>
<name>dfs.namenode.rpc-address.hadoop-cluster.nn1</name>
<value>hadoop102:8020</value>
</property>
<!-- nn2 的 RPC 通信地址 -->
<property>
<name>dfs.namenode.rpc-address.hadoop-cluster.nn2</name>
<value>hadoop103:8020</value>
</property>
<!-- nn1 的 http 通信地址 -->
<property>
<name>dfs.namenode.http-address.hadoop-cluster.nn1</name>
<value>hadoop102:50070</value>
</property>
<!-- nn2 的 http 通信地址 -->
<property>
<name>dfs.namenode.http-address.hadoop-cluster.nn2</name>
<value>hadoop103:50070</value>
</property>
<!-- 指定 NameNode 元数据在 JournalNode 上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hadoop102:8485;hadoop103:8485;hadoop104:8485/hadoop-cluster</value>
</property>
<!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!-- 使用隔离机制时需要 ssh 无秘钥登录-->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/tony/.ssh/id_rsa</value>
</property>
<!-- 访问代理类:client,hadoop-cluster,active 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.hadoop-cluster</name >
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 开启自动故障转移 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 关闭权限检查-->
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property>
</configuration>
yarn-site.xml
<configuration>
<!-- Reducer 获取数据的方式 -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 日志聚集功能使能 -->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<!-- 日志保留时间设置 7 天 -->
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>604800</value>
</property>
<!--启用 resourcemanager ha-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!--声明两台 resourcemanager 的地址-->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarn-cluster</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>hadoop102</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>hadoop103</value>
</property>
<!--指定 zookeeper 集群的地址-->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value >
</property>
<!--启用自动恢复-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!--指定 resourcemanager 的状态信息存储在 zookeeper 集群-->
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
</configuration>
mapred-site.xml
<configuration>
<!-- 指定 MR 运行在 YARN 上 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<!-- 历史服务器端地址 -->
<property>
<name>mapreduce.jobhistory.address</name>
<value>hadoop102:10020</value>
</property>
<!-- 历史服务器 web 端地址 -->
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hadoop102:19888</value>
</property>
</configuration>
第一次启动准备
HDFS
1、启动zookeeper集群
zk start
(PS:关于脚本请看另一篇博客大数据学习中的自动化脚本)
2、群启journalnode节点
sbin/hadoop-daemons.sh start journalnode
3、在 Namenode [nn1] 上,对其进行格式化
bin/hdfs namenode -format
4、初始化zookeeper中的hadoop-ha节点
bin/hdfs zkfc -formatZK
5、在 Namenode [nn1] 上启动HDFS服务
sbin/start-dfs.sh
6、在另外一个节点 Namenode [nn2] 上,同步nn1的元数据信息
bin/hdfs namenode -bootstrapStandby
7、启动 NameNode [nn2]
sbin/hadoop-daemon.sh start namenode
到此HDFS相关进程的第一次启动前准备就完成了,接下来可以在Web页面查看集群信息了。
多个NameNode只有一个状态active,其他的都为standby。 当active状态的NameNode出现故障,其他NameNode会立即出现一个新的NameNode状态更新为active,可以使用kill -9 pid测试一下。
YARN
1、选择一台resourcemanager节点所在机器启动yarn相关进程
sbin/start-yarn.sh
2、在另外的机器上启动resourcemanager
sbin/yarn-daemon.sh start resourcemanager
此时访问Web页面只能访问到一台机器的8088端口,访问其他ip的8088端口会跳转到当前支持对外访问的机器的8088端口。
如:访问hadoop102:8088会自动跳转到hadoop103:8088
写在后面
到此hadoop集群的HA配置就结束了。
关闭时先关闭独自打开的resourcemanager,再在执行start-yarn.sh的机器上执行stop-yarn.sh,在任意一台机器上执行stop-dfs.sh,就能够关闭所有hadoop进程了。
最后别忘了关闭zookeeper。
下次再开启的时候只需要执行start-dfs.sh就能够开启hadoop HA中HDFS的所有相关进程了,至于yarn,还是像第一次启动时那样启动就可以了。