数据结构-绪论

1.数据结构

在这里插入图片描述

2.时间复杂度

例1.
                                                                                        语句频度
for( int i=1;i<=2n;i++)
{
        y=y+1;                                                                         n-1
        for( int j=0;j<=2
n;j++)
        {        x++;        }                                                         (n-1)(2n+1)
}

T(n)=n-1+(n-1)(2n+1)=O(n2)不用在乎其系数和加减




例2.                                                                           频度
int i=1;                                                                         1
while(i<=n)
{
i=i  ∗ \ast  2;                                                                             x
}
设算法执行x次,则有2x≤n,即x≤log2n所以i=i*2的频度为log2n




例3.
int x=.0;
for(int i=0;i<=n;i++)
        for(int j=i+1;j<=n;j++)
                x++;


∑ i = 0 n ∑ j = i + 1 n \sum_{i=0}^n\sum_{j=i+1 }^n i=0nj=i+1n= ∑ i = 1 n \sum_{i=1}^n i=1n(n-1)
                         =(n-1)(n-2)+…+1
                         = n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)

T(n)=O(n2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值