复数与正交信号完全指南(中)

引言

本文是这个系列的第二篇,这个系列的三篇文章已经全部更新完成了:
复数与正交信号完全指南(上)
复数与正交信号完全指南(中)
复数与正交信号完全指南(下)

本文翻译自 Richard Lyons 的 《A Quadrature Signals Tutorial: Complex, But Not Complicated》,这篇文章绘制了大量图片,对信号的复数表示进行图解。出于方便,文中图片将直接使用原文截图。在翻译的间隙中会插入一些本人的注解,用绿色字体表示,以作区分。

在频域中表示正交信号

现在我们已经了解了正交信号的时域性质,接下来我们看看它的频域描述。这至关重要,因为我们将在正常的二维频域图中添加第三个维度,即时间。这样,正交信号的任何相位关系都不会被掩盖。图 8 告诉我们在频域中表示复指数的规则。

在这里插入图片描述

来看到图 9,我们将把单个复指数表示为位于指定频率处的窄带脉冲。此外,图片展示了复频域的实轴和虚轴,并描述了这些复指数频谱间的相位关系。

在这里插入图片描述

看看图 9 右侧的复杂频域坐标中,你会知道实正弦波和实余弦波是如何在复频域上描绘的。图 9 右侧的那些粗体箭头不是旋转向量,而是频域脉冲符号,表示单个复指数 e j 2 π f 0 t e^{j2\pi f_{0}t} ej2πf0t 的谱线。频谱脉冲的方向仅指的是相对相位。这些频谱脉冲的幅度是 1/2。好吧……我们为什么要费心这个 3D 频域表示呢?因为它是我们将用来了解通信系统中正交信号调制和解调的工具,而这也是本教程的两个目标。然而,在我们考虑这些过程之前,让我们用一个小例子来验证这个频域表示。

图 10 是我们如何使用复频域的简单示例。我们从一个实正弦波开始,将其与 j 相乘,然后将结果与相同频率的实余弦波相加。最终结果是单个复指数 e j 2 π f 0 t e^{j2\pi f_{0}t} ej2πf0t ,这个图形变化生动的展现了 Eq.(7). 即:
e j ϕ = c o s ( ϕ ) + j s i n ( ϕ ) (7) e^{j\phi} = cos(\phi) + jsin(\phi)\tag{7} ejϕ=cos(ϕ)+jsin(ϕ)(7)

在这里插入图片描述

在频率轴上,负频率的概念是指位于频率轴上 2 π f 0 2\pi f_{0} 2πf0 rad/s 处的频谱脉冲。该图说明了:例如 e j 2 π f 0 t e^{j2\pi f_{0}t} ej2πf0t e − j 2 π f 0 t e^{-j2\pi f_{0}t} ej2πf0t 这样的通用复指数是实正弦曲线 s i n ( 2 π f t ) sin(2\pi ft) sin(2πft) c o s ( 2 π f t ) cos(2\pi ft) cos(2πft) 的基本组成部分。这是因为 s i n ( 2 π f t ) sin(2\pi ft) sin(2πft) c o s ( 2 π f t ) cos(2\pi ft) cos(2πft) 均由 e j 2 π f 0 t e^{j2\pi f_{0}t} ej2πf0t e − j 2 π f 0 t e^{-j2\pi f_{0}t} ej2πf0t 组成。如果你要对 s i n ( 2 π f t ) sin(2\pi ft) sin(2πft) c o s ( 2 π f t ) cos(2\pi ft) cos(2πft) e − j 2 π f 0 t e^{-j2\pi f_{0}t} ej2πf0t 复正弦曲线的离散时域样本进行离散傅立叶变换,并绘制复数结果,你将获得图 10 中的那些窄带脉冲。

频域中的带通正交信号

在正交处理中,按照惯例,频谱的实部称为同相分量,频谱的虚部称为正交分量。图11(a)、(b)和©中的复频谱信号是实数信号。实信号总是具有正频谱分量和负频谱分量。对于任何实信号,其同相(实)频谱的正和负频率分量都始终在零频率点对称。即同相部分的正、负频率分量互为镜像。相反,其正交(虚)频谱的正和负频率分量始终互为负数。如图 11(a) 中的细实线箭头所示。当实信号的频谱用复数表示法表示时,这种“共轭对称性”是实信号的性质。

在这里插入图片描述

让我们再次提醒自己,图 11(a) 和 (b) 中的粗体箭头不是旋转向量。它们是频域脉冲符号,表示单个复指数 e j 2 π f t e^{j2\pi ft} ej2πft脉冲指向的方向显示了频谱分量的相对相位。

在我们继续之前,有一个重要的原则需要牢记。

将时间信号乘以复指数 e j 2 π f 0 t e^{j2\pi f_{0}t} ej2πf0t,我们称之为正交混频(也称为复混频),将该信号的频谱向上移动 f 0 H z f_{0} Hz f0Hz,如图 12 (a) 和 (b) 所示。同样,将时间信号乘以 e − j 2 π f 0 t e^{-j2\pi f_{0}t} ej2πf0t会将该信号的频谱频率下移 f 0 H z f_{0} Hz f0Hz

在这里插入图片描述

正交采样示例

通过探索正交采样的过程,我们可以使用迄今为止所学到的有关正交信号的所有知识。正交采样是将连续(模拟)带通信号数字化并将其频谱转换为以 0 H z 0Hz 0Hz 为中心的过程。让我们通过考虑以 f c H z fc Hz fcHz 载波频率为中心、带宽为 B 的连续带通信号来了解整个过程的工作原理。

在这里插入图片描述

我们正交采样的目标是将模拟信号数字化,但我们希望数字化信号的离散频谱以 0 H z 0 Hz 0Hz(而不是 f c H z fc Hz fcHz)为中心。也就是说,我们想要将时间信号与 e − j 2 π f 0 t e^{-j2\pi f_{0}t} ej2πf0t 混合来实现下变频。频率 f s f_{s} fs 是指采样率(以 samples/sec 为单位)。我们在图 13 底部展示了重复的频谱曲线,只是为了提醒我们自己在进行 A/D 转换时会出现这种效应。

好的,…看一下图 14 最上方的正交采样框图,这称为 I/Q 解调(也被称为“Weaver 解调”)。两个正弦曲线的排列具有相对 90° 相位差的振荡器通常称为正交振荡器。

图 14 中的 e j 2 π f c t e^{j2\pi f_{c}t} ej2πfct e − j 2 π f c t e^{-j2\pi f_{c}t} ej2πfct 项提醒我们,组成实余弦的复指数会复制 X b p ( f ) X_{bp}(f) Xbp(f) 的每个部分,产生 X i ( f ) X_{i}(f) Xi(f)。该图显示了我们如何将所需的复正交信号的同相部分滤波出来。根据定义 X i ( f ) Xi(f) Xi(f) I ( f ) I(f) I(f) 谱被视为“实部”。

在这里插入图片描述

同样,图 15 显示了如何通过将 X b p ( f ) X_{bp}(f) Xbp(f) s i n ( 2 π f c t ) sin(2\pi f_{c}t) sin(2πfct) 混合来获得正交相位部分。

在这里插入图片描述

这就是我们要得到的: I ( f ) − j Q ( f ) I(f) - jQ(f) I(f)jQ(f) 是原始带通信号 X b p ( f ) X_{bp}(f) Xbp(f) 的复数复制品的频率域表示。我们在图 16 中展示了这两个频谱的相加。

在这里插入图片描述

这种正交采样的典型描述看起来天方夜谭,不过当你从三维角度来看时,就会容易理解许多,如图 17 所示,其中 − j -j j 因子将“虚数” Q ( f ) Q(f) Q(f) 旋转 -90°,使得它是“实的”。然后将该 − j Q ( f ) -jQ(f) jQ(f) 添加到 I ( f ) I(f) I(f)

在这里插入图片描述

图 18 底部的复频谱图显示了我们想要的结果,即以 0 H z 0 Hz 0Hz 为中心的复数带通信号的数字化版本。

在这里插入图片描述

这种正交采样方案的一些优点是:

  • 每个 A/D 转换器都以标准实数信号采样的一半采样率运行;
  • 在许多硬件实现中,以较低的时钟速率运行可以节省功耗;
  • 对于给定的 f s f_{s} fs 采样率,我们可以捕获更宽频带的模拟信号。
  • 正交序列使 FFT 处理更加高效,因为与 FFT 输入为实值序列相比,正交序列覆盖的频率范围更广;
  • 由于正交序列被有效地过采样两倍,因此无需上采样即可进行信号平方操作;
  • 了解信号的相位可以实现相干处理;
  • 正交采样可以更轻松地测量解调过程中信号的瞬时幅度和相位;

返回到图 14 框图让我们想起正交信号的一个重要特性。我们可以将模拟正交信号发送到较远的位置。为此,我们使用两根同轴电缆,两个实数 i(t) 和 q(t) 信号在其上传输。 (为了传输离散时域正交序列,我们需要两根电缆,如图 19 所示。)

在这里插入图片描述

为了理解我们在这里讨论的物理意义,让我们意识到连续正交信号 x c ( t ) = i ( t ) + j q ( t ) x_{c}(t) = i(t) + jq(t) xc(t)=i(t)+jq(t) 不仅是一个数学的抽象。我们可以在实验室中生成 x c ( t ) x_{c}(t) xc(t) 并将其传输到远处。我们需要的只是两个正弦信号发生器,设置为相同的频率 f o f_{o} fo(但是,我们必须以某种方式同步这两个硬件发生器,以便它们的相对相移固定在 90°)。接下来,我们将同轴电缆连接到发生器的输出连接器,并运行这两个发生器,用“i(t)”来标记余弦信号,用“q(t)”来标记正弦信号。

现在进行两个小测验。在接收端,如果连续的 i ( t ) i(t) i(t) q ( t ) q(t) q(t) 信号分别连接到示波器的水平和垂直输入通道,我们会在示波器的屏幕​​上看到什么?

在这里插入图片描述

接下来,如果电缆标签错误并且两个信号无意中交换,示波器显示屏上会看到什么?第一个问题的答案是,如果我们将信号发生器的 f_{o} 频率设置为 1 H z 1 Hz 1Hz,我们会在示波器显示屏上看到一个亮“点”沿逆时针方向旋转一圈。如果交换电缆,我们会看到另一个圆圈,但这次它将沿顺时针方向旋转。

这个示波器示例帮助我们回答了一个重要问题:“当我们处理正交信号时,j 运算符是如何在硬件中实现的?”。答案是我们不可能买得到一个 j 操作器并将其焊接到电路板上。 j 操作器是通过我们如何对待两个信号来实现的,我们必须这样正交地对待它们。同相 i(t) 信号代表东西向值,正交相位 q(t) 信号代表正交南北向值(所谓正交,是指南北方向正好成 90°,相对于东西方向)。因此,在我们的示波器示例中,j 运算符仅通过与示波器的连接方式来实现,同相 i ( t ) i(t) i(t) 信号控制水平偏转;正交相位 q ( t ) q(t) q(t) 信号控制垂直偏转,结果是由示波器显示屏上的点的瞬时位置表示的二维正交信号。

接收端接收到离散序列 i(n) 和 q(n) ,我们能够通过添加或减去 j q ( n ) jq(n) jq(n) 序列来控制最终复数频谱的方向,如图 21 所示。

在这里插入图片描述

图 21 中上面一条路径相当于将原始 x b p ( t ) x_{bp}(t) xbp(t) 乘以 e − j 2 π f c t e^{-j2\pi f_{c}t} ej2πfct,底部路径相当于将 x b p ( t ) x_{bp}(t) xbp(t) 乘以 e j 2 π f c t e^{j2\pi f_{c}t} ej2πfct。因此,如果图 14 的正交振荡器的正交部分为负, − s i n ( 2 π f c t ) -sin(2\pi f_{c}t) sin(2πfct),则所得的复频谱将被沿着 0 H z 0Hz 0Hz 翻转,如图 21 所示。

当我们考虑翻转复杂频谱时,需要提醒自己,有两种简单的方法可以翻转 x ( n ) = i ( n ) + j q ( n ) x(n) = i(n) + jq(n) x(n)=i(n)+jq(n) 序列的频谱。如图 21 所示,我们可以执行共轭以获得具有反转幅度谱的 x ′ ( n ) = i ( n ) − j q ( n ) x'(n) = i(n) - jq(n) x(n)=i(n)jq(n)。第二种方法是交换 x(n) 的各个 i(n) 和 q(n) 样本值以创建一个新序列 y ( n ) = q ( n ) + j i ( n ) y(n) = q(n) + ji(n) y(n)=q(n)+ji(n)(注意,虽然 x’(n) 和 y(n) 的频谱幅度相等,但它们的频谱相位不相等)。

结论

我们的正交信号小教程到此结束。我们了解到,使用复平面来可视化复数的数学描述使我们能够了解正交信号和实际信号之间的关系。我们看到了三维频域描述如何帮助我们理解正交信号是如何生成、频率转换、组合和分离的。最后,我们回顾了正交采样的示例以及用于反转正交序列频谱的两种方案。

References

  • [1] D. Struik, A Concise History of Mathematics, Dover Publications, NY, 1967.
  • [2] D. Bergamini, Mathematics, Life Science Library, Time Inc., New York, 1963.
  • [3] N. Boutin, “Complex Signals,” RF Design, December 1989.
  • 22
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值