如何调用gitee仓库真实图片链接

真实图片链接
  • 注意复制gitee内图片地址时,需要将blob改为raw

  • 复制的地址:https://gitee.com/wm-coder/images/blob/master/%E6%93%8D%E4%BD%9C%E5%AE%9E%E4%BE%8B%E5%9B%BE%E7%89%87.jpg

  • 修改的地址:https://gitee.com/wm-coder/images/raw/master/%E6%93%8D%E4%BD%9C%E5%AE%9E%E4%BE%8B%E5%9B%BE%E7%89%87.jpg

### 使用CycleGAN实现动漫风格的人脸图片生成 为了使用CycleGAN将真人照片转换为具有特定艺术风格的二次元图像,可以遵循以下方法: #### 准备工作环境 确保安装必要的依赖库。通常情况下,这涉及到PyTorch框架及其扩展包torchvision用于加载数据集以及处理图像。 ```bash pip install torch torchvision matplotlib opencv-python ``` #### 获取预训练模型 可以从指定资源获取预先训练好的CycleGAN模型权重文件。对于动漫风格转化的任务,可访问提供的Gitee仓库链接下载相应的checkpoint文件[^3]。 #### 数据准备 创建并整理好待处理的真实人脸图片路径,并设置输出目录来存储转换后的结果。如果采用的是官方教程中的配置,则应参照其结构建立`testA`子文件夹放置测试样本。 #### 调整参数与执行推理过程 修改脚本内的超参设定以适应个人需求,比如批次大小(batch size),线程数(workers)等;之后运行预测命令完成从真实域到卡通域之间的映射操作。 ```python import os from options.test_options import TestOptions from data import CreateDataLoader from models import create_model from util.visualizer import save_images from util import html if __name__ == '__main__': opt = TestOptions().parse() # hard-code some parameters for test opt.num_threads = 1 # 测试期间使用的CPU核心数量 opt.batch_size = 1 # 单次前向传播所用样本量 opt.serial_batches = True # 禁用数据洗牌 opt.no_flip = True # 不应用水平翻转的数据增强策略 opt.display_id = -1 # 关闭可视化窗口 data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() model = create_model(opt) model.setup(opt) web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) for i, data in enumerate(dataset): if i >= opt.num_test: break model.set_input(data) model.test() visuals = model.get_current_visuals() img_path = model.get_image_paths() save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio) webpage.save() ``` 此段代码展示了如何利用已有的CycleGAN架构来进行跨领域图像翻译的具体流程,包括但不限于初始化选项解析、构建合适的数据读取器、实例化网络对象、定义保存位置等一系列准备工作,最终通过调用`.test()`函数触发实际的推断逻辑并将得到的结果按照一定格式存盘以便后续查看效果[^2]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

未名编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值