01 高等数学 上下册知识点总结

这篇博客详细总结了高等数学的重要知识点,包括等比数列求和、常用不等式、三角函数公式、椭圆面积、排列组合、二项式定理、数学归纳法。深入探讨了极限概念,如泰勒公式、函数的连续性、可导性、微分中值定理。此外,还涵盖了导数的应用、积分计算、反常积分的判敛方法,以及微分方程和无穷级数的基本理论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高等数学 上下册知识点总结

一、 初等数学公式

1.1等比数列求和公式

等差等比数列求和

1.2 常用不等式

调和平均数<=几何平均数<=算术平均数<=平方平均数
在这里插入图片描述

基本不等式、柯西不等式、柯西不等式积分形式
通过切线理解:
e x − 1 ⩾ x ⩾ s i n x e^{x}-1\geqslant x \geqslant sinx ex1xsinx
x ⩾ l n x + 1 x\geqslant lnx+1 xlnx+1

1.3 三角函数公式

1.3.1 和差化积简单形式

在这里插入图片描述

1.3.2 和差化积复杂形式

在这里插入图片描述

1.3.3积化和差公式

在这里插入图片描述

1.4 椭圆面积公式

在这里插入图片描述

1.5 排列组合公式

在这里插入图片描述
在这里插入图片描述

1.6二项式展开定理

在这里插入图片描述

1.7 立方和公式

在这里插入图片描述

1.8 数学归纳法

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

二、极限与函数

2.1 极限

8个等价无穷小

在这里插入图片描述

8个常用泰勒公式

在这里插入图片描述

泰勒公式、泰勒级数与展开式

在这里插入图片描述

在这里插入图片描述

2.2 数列极限

2.2.1定义(级数专题)
2.2.2单调有界准则
在这里插入图片描述

2.2.3夹逼准则(不需取等号)
数列与级数

2.3 函数极限

2.3.1函数极限的局部保号性

在这里插入图片描述

2.3.1 连续与间断

连续的判断条件:有定义,左极限=有极限=函数值
间断点可以取值:无定义点(必间断)、分段函数分段点(可能间断)

第一类间断点:极限存在
可去间断点:左极限=右极限
跳跃间断点:左极限与右极限不等

第二类间断点:有极限不存在
无穷间断点:极限为无穷
震荡间断点:极限不确定
在这里插入图片描述

2.3.2 渐近线

在这里插入图片描述

2.4 各种结论的互推关系

2.4.1 连续、可导、可微的关系( 一元函数)

连续的判断条件:有定义,左极限=有极限=函数值
可导的判断条件:左导数=右导数
一元函数:可微<=>可导,可导一定连续,连续不一定可导

△ y = A △ x + o ( △ x ) d y = A d x A = f ′ ( x ) \triangle y=A\triangle x+o(\triangle x)\\dy=Adx\\A=f'(x) y=Ax+o(x)dy=AdxA=f(x)

2.4.2 函数、导函数、原函数的关系

在这里插入图片描述

2.4.3 邻域、去心邻域、某点的关系

结论越靠近左上越强,去心邻域与某点不相关
在这里插入图片描述

2.5 平面的常考函数图像

在这里插入图片描述

三、一元函数微积分学

3.1 导数

3.1.1 基本求导公式

在这里插入图片描述

3.1.2 求导(复杂)

分段函数(分段点用定义)

在这里插入图片描述
绝对值函数先转化为分段函数
在这里插入图片描述

高阶导数(求到几阶,展开式展开到几阶)

在这里插入图片描述

参数方程求导
隐函数求导
复合函数(链式法则、求偏导)

3.1.3 导数的应用

求导定义

求函数在某点横坐标为a处的导数
lim ⁡ x → a f ( x ) − f ( a ) x − a \lim\limits_{x\rightarrow a}\frac{f(x)-f(a)}{x-a} xalimxaf(x)f(a)

单调性与极值点:

单调性:一阶导数正负,正则增,负则减
一元函数极值点:定义两侧单调性变化的点,一阶导数的正负变化的点

一元函数极值点可能是无定义点或一阶导数等于0的点
必要条件:
若存在一阶导数,则一阶导数则必为0
若存在二阶导数,则二阶导数不为0,正则极小,负则极大
在这里插入图片描述

凹凸性与拐点:

凹凸性:二阶导数正负,正则凹,负则凸
拐点:定义两侧凹凸变化的点,即二阶导数的正负变化的点

拐点可能是无定义点或二阶导数等于0的点
必要条件:
若存在二阶导数,则二阶导数则必为零
若存在三阶导数,则三阶导数不为0

在这里插入图片描述

曲率

在这里插入图片描述

3.2 积分

3.2.1 常用积分公式

点击跳转

3.2.2 连续分部积分——表格法(可求导到0)

点击跳转

3.2.3 指数函数和三角函数相乘的积分

在这里插入图片描述

3.2.4 留数法-多项式不定积分

问题背景:
高等数学的多项式不定积分问题
信号与系统的拉普拉斯反变换、z反变换
复变函数留数定理(需留数先计算)

常规思路:
设系数进行部分分式展开
待机系数法,求解系数
配合留数法、系数匹配法、特殊值解方程法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

复变函数中的留数

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

3.2.5 反常积分

常见反常积分判敛:无穷积分与瑕积分

在这里插入图片描述
在这里插入图片描述

反常积分审敛法(类似 级数审敛法)

比较审敛法:比较大小,比值极限形式(极限审敛法)
——被积函数比发散的大则发散,被积函数比收敛的小则收敛
——被积函数比值非0常数,则反常积分具有相同敛散性
在这里插入图片描述

p值审敛法

趋于无穷的速度

无穷大的任意正数次幂趋于无穷,正数越小只会影响趋于的速度
趋于0的任意正数次幂趋于0,正数越小只会影响趋于的速度
在这里插入图片描述

趋向于无穷小的速度:等价无穷小
趋向于无穷大的速度:
幂指函数( X x X^x Xx)>指数函数( e x e^x ex)>幂函数( x k x^k xk)>对数函数( l n x lnx lnx

在这里插入图片描述

3.2.6 放炮公式

在这里插入图片描述
在这里插入图片描述

3.2.8 超越积分

在这里插入图片描述

3.2.7 正态分布与伽马函数

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、逻辑推理

4.1 有界性、最值性、零点定理、介值定理

在这里插入图片描述
导数零点定理
在这里插入图片描述
导数介质定理
在这里插入图片描述

4.2 中值定理

4.2.1四大中值定理(费罗拉柯)

费马定理
在这里插入图片描述
罗尔中值定理
拉格朗日中值定理微分形式
柯西中值定理
在这里插入图片描述

4.2.2 积分中值定理

积分第一中值定理

在这里插入图片描述
在这里插入图片描述
拉格朗日中值定理积分形式
在这里插入图片描述
积分第二中值定理
在这里插入图片描述

二重积分中值定理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、微分方程专题

点击跳转

六、多元函数微积分学专题

点击跳转

七、向量代数与空间解析几何专题

点击跳转

八、无穷级数专题

点击跳转

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值