一、 向量代数
分配率:
点乘与叉乘都有分配率
交换律:
点乘有交换率,叉乘交换之后结果相反
轮换对称性:
叉乘有轮换对称性(abc)=(aXb).c
则(abc)=(bca)=(cab)
两向量垂直:点乘为0
两向量平行:叉乘为0或者对应坐标成比例
二、平面直线、平面曲线:
共性:一元函数y=f(x),或者二元方程f(x,y)=0表示
特性:
平面直线——变量呈线性关系
一般式:Ax+By+C=0
点法式:A(x-x0)+B(y-y0)=0
平面曲线——变量x与y呈非线性关系(甚至不是函数,可能围成了闭合曲线)
三、空间直线、空间曲线:
空间直线:
1.一般式:两个空间平面的交线
联立A1x+B1y+C1z+D1=0和A2x+B2y+C2z+D2=0
方向向量n=(A1,B1,C1)x(A2,B2,C2)
3.对称式:
x
−
x
0
l
=
y
−
y
0
m
=
z
−
z
0
n
\frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n}
lx−x0=my−y0=nz−z0
方向向量(l,m,n),(x0,y0,z0)是直线上一点
3.参数式:令上式等于t得到 x=x0+lt,y=y0+mt,z=z0+nt
方向向量(l,m,n)
空间曲线(有切向量):
1.一般式:联立F(x,y,z)=0和G(x,y,z)=0 ——消去某个变量得到柱面
某点切向量:n=n1xn2
2.参数式:x=x(t),y=y(t),z=z(t)
某点切向量:分别对t求导之后代入坐标可以得到
四、空间平面、空间曲面:
共性:二元函数z=f(x,y),或者用三元方程f(x,y,z)=0表示
特性:
空间平面
——变量呈线性关系
一般式:Ax+By+Cz+D=0, 平面法向量n=(A,B,C)
点法式:A(x-x0)+B(y-y0)+C(z-z0)=0,(x0,y0,z0)是平面上一点,平面法向量n=(A,B,C)
截距式:x/a+y/b+z/c=1,a、b、c代表在三个坐标轴上的截距
空间曲面(有法向量)
——变量x、y、z呈非线性关系(甚至不是函数,可能围成了闭合曲面)
1.方程式:F(x,y,z)=0
某点法向量:n={Fx,Fy,Fz},三个偏导数
2.函数式:z=f(x,y)
某点法向量:n={fx,fy,-1},两个个偏导数
已知某个向量(知道这个向量在各个坐标轴的分量),可以求出这个向量与各个平面的方向余弦。——已知曲面上一点,得到该点的法向量,得到法向量的方向余弦,得到面微元与坐标轴的夹角
五、曲面及其图像:
1.旋转面:绕谁谁不动,剩下两个开根号
平面曲线绕平面直线旋转
例如:对于曲线f(y,z)=0且x=0,则曲面绕y轴得到曲面方程:
f
(
y
,
±
x
2
+
z
2
)
f(y,\pm\sqrt{x^2+z2})
f(y,±x2+z2)
2.柱面:
动直线沿着定曲线,且平行某定直线(很多条)
母线:动直线 准线:定曲线
例如:
1.准线是平面曲线:f(x,y)=0且z=0,母线平行于z轴,得到柱面方程:
f(x,y)=0,z任意
2.准线是空间曲线:联立F(x,y,z)=0和G(x,y,z)=0,母线平行于z轴,联立去z得到柱面方程:
H(x,y)=0,z任意
3.常见二次曲面及其图像
1.圆柱面
x 2 + y 2 = R 2 , z 任 意 x^2+y^2=R^2,z任意 x2+y2=R2,z任意
2.球面
x 2 + y 2 + z 2 = R 2 x^2+y^2+z^2=R^2 x2+y2+z2=R2
3.圆锥面
x 2 + y 2 = z 2 , ( 锥 尖 在 原 点 , z = ∣ x ∣ 绕 z 轴 旋 转 得 到 ) x^2+y^2=z^2,(锥尖在原点,z=|x|绕z轴旋转得到) x2+y2=z2,(锥尖在原点,z=∣x∣绕z轴旋转得到)
4.旋转抛物面
z = x 2 + y 2 ( 底 在 原 点 , z = x 2 绕 z 轴 旋 转 得 到 ) z=x^2+y^2(底在原点,z=x^2绕z轴旋转得到) z=x2+y2(底在原点,z=x2绕z轴旋转得到)
六、线、面关系
平面与直线的关系(平行,垂直,夹角)
1.两直线关系:两直线的方向向量之间的夹角,必须得到锐角,若不是锐角则pi-a
2.两平面关系:两平面的法向向量之间的夹角
3.平面与直线的关系:直线的方向向量与平面的法向向量,先得一个锐角pi-a,在得到这个锐角的互余角pi/2-a
点到平面或直线的距离
S=|ABXs|=d.|s|,A是直线上的点,B是平面外一点