题意:
有n个珠子,每次必须涂色m个连续的。这 n个珠子是个环。询问胜负情况
思路:
对于是个环的情况,我们可以首先拿出一组m,如果n<m,先手必输。否则的话跑sg函数,注意此时sg函数跑的是后手的sg情况。
这样环就转变为了链结构,对于一条链,sg[ i<m]=0, sg[m]=1, 每一个sg情况等于子问题的异或。
因此转变为了 对于i>m的情况下, 如果从中拿出m个连续珠子。
子问题是: 假如在j处取这m个珠子, 左侧 j,右侧 i-m-j。
#include <iostream>
#include <algorithm>
#include <cmath>
#include <ctype.h>
#include <cstring>
#include <cstdio>
#include <sstream>
#include <cstdlib>
#include <iomanip>
#include <string>
#include <queue>
#include <map>
using namespace std;
typedef long long ll;
const int maxn = 1005;
const ll mod = 1e9 + 7;
#define N 20
int f[N], sg[maxn], s[maxn];
//f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getsg之前预处理
//sg[]:0—n的sg函数值
//s[]:为x的后继状态集合
void getsg(int n, int m)
{
int i, j;
memset(sg, 0, sizeof(sg));
//因为sg[0]始终等于0,所以i从1开始
sg[m] = 1;
for (i = m + 1; i <= n; i++)
{
//每一次都要将上一状态的后继集合重置
memset(s, 0, sizeof(s));
for (j = 0; j <= i - m; j++)
s[sg[j] ^ sg[i - m - j]] = 1;
for(j=0;;j++)
if (!s[j])
{
//查询当前后继状态sg值中最小的非零值
sg[i] = j;
break;
}
}
}
int main() {
int n, m, k;
int cas = 1;
int t;
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &m);
printf("Case #%d: ", cas++);
if (n < m)
{
printf("abcdxyzk\n");
}
else
{
n -= m;
getsg(n, m);
if (sg[n])
printf("abcdxyzk\n");
else
printf("aekdycoin\n");
}
}
return 0;
}