莫烦python学习之多进程

什么是多进程?
多进程 Multiprocessing 和多线程 threading 类似, 他们都是在 python 中用来并行运算的. 不过既然有了 threading, 为什么 Python 还要出一个 multiprocessing 呢? 原因很简单, 就是用来弥补 threading 的一些劣势, 比如在 threading 教程中提到的GIL.
上一节我们了解到了多线程,多线程和多进程的运用十分相似:

#多进程和多线程进行比较
import multiprocessing as mp
import threading as td
def job(a,b):
    print("aaa")
def adding():
    t=td.Thread(target=job,args=(1,2))
    p=mp.Process(target=job,args=(1,2))
    t.start()
    p.start()
    t.join()
    p.join()
if __name__=="__main__":
    adding()
  

存储进程输出

Queue的功能是将每个核或线程的运算结果放在队里中, 等到每个线程或核运行完毕后再从队列中取出结果, 继续加载运算。原因很简单, 多线程调用的函数不能有返回值, 所以使用Queue存储多个线程运算的结果

import multiprocessing as mp
from queue import Queue
def job(q):
    res=0
    for i in range(1000):
        res+=i+i**2
    q.put(res)
def adding_mp():
    res1=mp.Process(target=job,args=(q,))
    res2 = mp.Process(target=job, args=(q,))
    res1.start()
    res1.join()
    res2.start()
    res2.join()

if __name__=="__main__":
    q=mp.Queue()
    adding_mp()
    res1=q.get()
    res2 = q.get()
    print(res1+res2)

Multiprocessing和Threading的对比

可以运行下面例子看出来,多线程比什么多不用还要慢一点(对于纯运算,没用到多核的优势)
当运算工作量很大时(累加10000000),多进程的优势就体现出来了,快了近一倍(可能是我双核)
但是如果工作量不大(可以把100000000改小试试),多进程反而慢,可能是因为创建进程的时间更长
 import multiprocessing as mp
    import threading as td
    import time
 
    def job(q):
            res = 0
            for i in range(10000000):
                res += i+i**2+i**3
            q.put(res)
 
    def multcore():         #多进程运算
            q = mp.Queue()
            p1 = mp.Process(target=job, args=(q,))  #加逗号说明args是可迭代的东西后面还能加东西
            p2 = mp.Process(target=job, args=(q,))
            p1.start()
            p2.start()
            p1.join()
            p2.join()
            res1 = q.get()
            res2 = q.get()
            print('multcore:',res1+res2)
 
    def normal():       #什么都不用
            res = 0
            for _ in range(2):
                for i in range(10000000):
                    res += i + i ** 2 + i ** 3
            print('normal:',res)
 
    def multithread():      #多线程
            q = mp.Queue()
            t1 = td.Thread(target=job, args=(q,))  # 加逗号说明args是可迭代的东西后面还能加东西
            t2 = td.Thread(target=job, args=(q,))
            t1.start()
            t2.start()
            t1.join()
            t2.join()
            res1 = q.get()
            res2 = q.get()
            print('multthread:',res1 + res2)
 
    if __name__ == '__main__':
            st = time.time()
            normal()
            st1 = time.time()
            print('normal time:',st1 - st)
            multithread()
            st2 = time.time()
            print('multithread time:',st2 - st1)
            multcore()
            st3 = time.time()
            print('mulcore time:',st3 - st2)

进程池pool: 进程池就是我们将所要运行的东西,放到池子里,Python会自行解决多进程的问题

 import multiprocessing as mp
    import threading as td
    import time
 
    def job(x):
            return x*x
 
    def multcore():
            pool = mp.Pool(processes=2)                #定义一个pool,定义数字告诉系统使用几个核
            # mp.Process不能接受返回值,但是pool可以接受返回值
            res = pool.map(job,range(10000))      #往pool放入函数和传入的值,会自动分配给每个进程
            print(res)
 
            res = pool.apply_async(job,(2,))   #传入一个值给一个核运行
            print(res.get())                    #拿出返回值
 
            multi_res = [pool.apply_async(job,(i,)) for i in range(10)] #通过迭代传入多个值
            print([res.get() for res in multi_res])                  #结果也要一个个拿
 
    if __name__ == '__main__':
            multcore()

lock锁:

 import multiprocessing as mp
    import time
 
    def job(v, num, l):
            l.acquire() # 锁住
            for _ in range(5):
                time.sleep(0.1)
                v.value += num # 获取共享内存
                print(v.value)
            l.release() # 释放
 
    def multicore():
            l = mp.Lock() # 定义一个进程锁
            v = mp.Value('i', 0) # 定义共享内存
            p1 = mp.Process(target=job, args=(v,1,l)) # 需要将lock传入
            p2 = mp.Process(target=job, args=(v,3,l))
            p1.start()
            p2.start()
            p1.join()
            p2.join()
 
    if __name__ == '__main__':
            multicore
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值