天池数据挖掘比赛-心跳信号分类03-特征工程

特征工程

学习目标

学习时间序列数据的特征预处理方法

学习时间序列特征处理工具Tsfresh(TimeSeries Fresh)的使用

数据预处理

时间序列数据格式处理、加入时间步特征time

特征工程

时间序列特征构造、特征筛选、使用tsfresh进行时间序列特征处理

# 库函数导入
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tsfresh as tsf
from tsfresh import extract_features,select_features
from tsfresh.utilities.dataframe_functions import impute
#数据读取
data_train = pd.read_csv("train.csv")
data_test = pd.read_csv("testA.csv")
print(data_train.shape)
print(data_test.shape)
(100000, 3)
(20000, 2)
data_train.head()
id heartbeat_signals label
0 0 0.9912297987616655,0.9435330436439665,0.764677... 0.0
1 1 0.9714822034884503,0.9289687459588268,0.572932... 0.0
2 2 1.0,0.9591487564065292,0.7013782792997189,0.23... 2.0
3 3 0.9757952826275774,0.9340884687738161,0.659636... 0.0
4 4 0.0,0.055816398940721094,0.26129357194994196,0... 2.0
data_test.head()
id heartbeat_signals
0 100000 0.9915713654170097,1.0,0.6318163407681274,0.13...
1 100001 0.6075533139615096,0.5417083883163654,0.340694...
2 100002 0.9752726292239277,0.6710965234906665,0.686758...
3 100003 0.9956348033996116,0.9170249621481004,0.521096...
4 100004 1.0,0.8879490481178918,0.745564725322326,0.531...

数据预处理

# 对心电特征进行行转列处理,同时为每个心电信号加入时间步特征time
train_heartbeat_df = data_train["heartbeat_signals"].str.split(",",expand=True).stack()
train_heartbeat_df = train_heartbeat_df.reset_index()
train_heartbeat_df = train_heartbeat_df.set_index("level_0")
train_heartbeat_df.index.name = None
train_heartbeat_df.rename(columns=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值