Civitai 转 diffusers 的 base model

Civitai 转 diffusers 的 base model

Q1

pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
	# "runwayml/stable-diffusion-v1-5", 
	"/data/model/basemodel/realistic_v10BAKEDVAE.safetensors",
 	controlnet=controlnet, torch_dtype=torch.float16,
	local_files_only = True
)
>>
huggingface_hub.utils._validators.HFValidationError: Repo id must be in the form 'repo_name' or
'namespace/repo_name': '/data/model/basemodel/realistic_v10BAKEDVAE.safetensors'. Use `repo_type`
argument if needed.

Civitai上的模型多是webui训练来的,不能直接用到diffusers框架上,需要转。

conda create -n diffusers python=3.10
conda activate diffusers
pip install --upgrade diffusers[torch]
pip install transformers
pip install omegaconf
pip install safetensors
git clone https://github.com/huggingface/diffusers
python ./diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py \
 --checkpoint_path ./model/realistic_v10BAKEDVAE.safetensors \ 
 --dump_path ./diffusers_model --from_safetensors
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
	"./model/diffusers_model",
 	controlnet=controlnet, torch_dtype=torch.float16,
	local_files_only = True
)
【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
内容概要:本文详细介绍了利用改进粒子群算法(PSO)进行混合储能系统(如电池与超级电容组合)容量优化的方法。文中首先指出了传统PSO易陷入局部最优的问题,并提出通过非线性衰减惯性权重、引入混沌因子和突变操作等方法来改进算法性能。随后,作者展示了具体的Python代码实现,包括粒子更新策略、适应度函数设计以及边界处理等方面的内容。适应度函数不仅考虑了设备的成本,还加入了对设备寿命和功率调节失败率的考量,确保优化结果的实际可行性。实验结果显示,在风光发电系统的应用场景中,改进后的PSO能够在较短时间内找到接近全局最优解的储能配置方案,相比传统方法降低了系统总成本并提高了循环寿命。 适合人群:从事电力系统、新能源技术研究的专业人士,尤其是对储能系统优化感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要对混合储能系统进行容量优化的场合,旨在提高储能系统的经济效益和使用寿命,同时保证供电稳定性。通过学习本文提供的理论知识和代码实例,读者能够掌握改进粒子群算法的应用技巧,从而应用于实际工程项目中。 其他说明:文中提到的所有代码均为Python实现,且已在GitHub上提供完整的源代码链接(尽管文中给出的是虚拟地址)。此外,作者还计划将改进的PSO与其他优化算法相结合,进一步提升求解复杂问题的能力。
### 使用 Diffusers 进行图像放大的方法 在 ComfyUI 中利用 Diffusers 实现高质量的图像放大主要依赖于模型推理过程中的超分辨率技术。为了实现这一目标,用户需先加载预训练好的超分辨率模型[^1]。 #### 加载并配置环境 确保安装了必要的 Python 库来支持 Diffusers 的运行: ```bash pip install "diffusers>=0.17.0" ``` 接着,在脚本中引入所需模块,并指定要使用的设备(CPU 或 GPU): ```python from diffusers import StableDiffusionUpscalePipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_id_or_path = 'stabilityai/stable-diffusion-x4-upscaler' pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id_or_path).to(device) ``` #### 准备输入图片 对于待处理的小尺寸源图,应将其换成适合传递给管道函数的形式。通常情况下这意味着读取文件路径下的图像数据,并调整其大小至特定宽度和高度以便更好地适应模型的要求[^2]: ```python from PIL import Image, ImageOps low_res_img = Image.open("<path_to_your_image>").convert("RGB") # 替换为实际路径 low_res_img = low_res_img.resize((128, 128)) # 调整到适当尺寸 ``` #### 执行上采样操作 有了准备就绪的数据之后就可以调用 `upsample` 方法来进行最终的放大工作了。此过程中还可以设置一些参数来自定义输出效果,比如提示词用于指导生成更贴近预期的结果[^3]: ```python prompt = "A detailed photo of a cat with clear eyes and fur texture." high_res_imgs = pipeline(prompt=prompt, image=low_res_img).images for i, high_res_img in enumerate(high_res_imgs): high_res_img.save(f"{i}.png") ``` 通过上述步骤可以在 ComfyUI 平台上成功应用 Diffusers 来完成图像的高倍率放大任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沃洛德.辛肯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值