ARIMA模型的基础知识

ARIMA模型的前提条件
平稳性:

  样本的时间序列所得到的拟合曲线在未来的一段时间内仍能顺着现有的形态“惯性”地延续下去。平稳性要求序列的均值和方差不发生明显变化

  严平稳与弱平稳:

  严平稳:严平稳表示的分布不随时间的改变而改变。如白噪声(正态分布),无论怎么取,都是期望为0,方差为1
  弱平稳:期望与相关系数(依赖性)不变。未来某时刻的t的值Xt就要依赖于它的过去信息,所以需要依赖性。实际中拿到的数据大部分是这样的。


[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UnliArSW-1594970048965)(en-resource://database/3834:1)]

  差分法:时间序列在t与t-1时刻的差值。一般拿到数据之后都要进行差分处理,用一次差分法就是一阶差分,在一阶差分的基础上再做一次就是二阶差分。差分法处理之后数据会相对平稳,平稳时ARIMA模型的要求。


自回归模型(AR)
  • 描述当前值与历史值之间的关系,用变量自身的历史时间数据对自身进行预测

  • 自回归模型必须满足平稳性的要求

  • p阶自回归过程的公式定义:

  • y t = μ + Σ i = 1 p γ i y t − i + + + ϵ t y_t = \mu + \Sigma _{i=1}^p \gamma_i y _{t-i++} +\epsilon_t yt=μ+Σi=1pγiyti+++ϵt

  • y t y_t yt是当前值, μ \mu μ是常数项,P是阶数, γ i \gamma_i γi是自相关系数, ϵ t \epsilon_t ϵt是误差

  • P阶要说明一下,一阶代表今天和昨天,二阶代表今天和前天。
    自回归模型的限制

    • 自回归模型是用自身的数据来预测
    • 必须具有平稳性
    • 必须具有自相关性,如果自相关系数 ϕ i \phi_i ϕi 小于0.5,则不宜采用
    • 自回归只适用于预测与自身前期相关的现象
移动平均模型(MA)
  • 移动平均模型关注的是自回归模型中的误差项的累加
  • q阶自回归过程的公式定义:
  • y t = μ + ϵ t + Σ i = 1 q θ i ϵ t − i y_t = \mu + \epsilon_t + \Sigma_{i=1}^q\theta_i \epsilon_{t-i} yt=μ+ϵt+Σi=1qθiϵti
  • 移动平均法能有效地消除预测中的随机波动
自回归移动平均模型(ARIMA)
  • 自回归与移动平均的结合
  • 公式定义:
  • y t = μ + Σ i = 1 p γ i y t − i + ϵ t + Σ i = 1 q θ i ϵ t − i y_t = \mu +\Sigma_{i=1}^p\gamma_iy_{t-i}+\epsilon_t+\Sigma_{i=1}^q\theta_i\epsilon_{t-i} yt=μ+Σi=1pγiyti+ϵt+Σi=1qθiϵti
  • 这个公式里p和q需要指定,然后 γ i \gamma_i γi θ i \theta_i θi需要求解
ARIMA(p,d,q)模型

全称为差分自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记为ARIMA)

  • AR是自回归,p是自回归项;MA是移动平均,q为移动平均项数,d是时间序列成为平稳时所做的差分次数。
  • 原理:将非平稳时间序列转化为平稳序列,然后将因变量的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型
自相关函数ACF(autocorrelation function)
  • 有序的随机变量与其自身比较,自相关函数反映了同一序列在不同时序的取值之间的相关性
  • 公式:
  • A C F ( k ) = ρ k = C o v ( y t , y t − k ) V a r ( y t ) ACF(k)=\rho_k=\frac{Cov(y_t,y_{t-k})}{Var(y_t)} ACF(k)=ρk=Var(yt)Cov(yt,ytk)
  • ρ k \rho_k ρk 的取值范围为[-1,1]
偏自相关函数PCAF(partial autocorrelation function)
  • 对于一个平稳AR§模型,求出滞后k自相关系数 ρ \rho ρ 时,实际上得到的并不是x(t)与x(t-k)之间的单纯的相关关系
  • x(t)同时还会受到中间k-1个随机变量x(t-1)、x(t-2)、…、x(t-k+1)的影响,而这k-1个随机变量又都和x(t-k)具有相关关系,所以自相关系数 ρ k \rho_k ρk里实际掺杂了其他变量对x(t)和x(t-k)的影响
  • 而偏自相关系数PACF是严格的这两个变量之间的相关性
ARIMA(p,d,q)阶数的确定

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-R9mrtv8c-1594970048968)(en-resource://database/3836:1)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-G0GVuNkn-1594970048970)(en-resource://database/3838:1)]

  • d肉眼观察
  • p、q通过ACF图和PACF图进行确定
ARIMA建模流程:
  1. 将序列平稳(差分法,确定d)
  2. p和q结束确定:ACF与PACF
  3. ARIMA(p,d,q
模型参数选择AIC与BIC:选择更简单的模型
  • AIC:赤池信息准则(Akaike Information Criterion, AIC)
  • A I C = 2 k − 2 l n ( L ) AIC = 2k - 2ln(L) AIC=2k2ln(L)
  • BIC:贝叶斯信息准则(Bayesian Information Criterion, BIC)
  • B I C = k l n ( n ) − 2 l n ( L ) BIC = kln(n) - 2ln(L) BIC=kln(n)2ln(L)
  • k为模型参数个数,n为样本数量,L为似然函数
  • 这两个准则下都是越小越好
模型残差检验
  • ARIMA模型的残差是否是平均值为零且方差为常数的正态分布
  • QQ图:线性即正态分布
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值